

# WORKGROUP REPORT: F006 BENCHMARKING STUDY

September 1998

# TABLE OF CONTENTS

| EXEC  | UTIVE SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I.    | BACKGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | <ul> <li>C. F006 Sludge Generation and Management</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | Hazardous waste in 1980       12         E.       Reasons this Study was Conducted       16         F.       Worker Health and Safety       16         17       17                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| II.   | NATIONAL F006 BENCHMARKING STUDY APPROACH20A.Overview20B.Methodology201.Regional Benchmarking Study212.National Benchmarking Study233.Statistical Analysis of the Regional and National Benchmarking Data234.Survey of Commercial Recyclers245.Survey of Community Environmental Groups24                                                                                                                                                                                                                                                                                                                                     |
| III.  | RESULTS OF THE F006 BENCHMARKING STUDY       24         A.       Summaries of Regional and National Benchmarking F006 Waste Characterization         Data       24         1.       Benchmarking Summary Tables       24         2.       Statistical Analysis: Does this Data Come from "Typical" Metal Finishers?       24         3.       Results of Commercial Recyclers and Citizen Group Surveys       25         B.       Detailed Results of the Regional and National Benchmarking Studies       29         1.       The Milwaukee Benchmarking Study       29         2.       Chicago Benchmarking Study       47 |
|       | <ol> <li>Phoenix Benchmarking Study</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Appen | dix A:<br>Summary of the 10 Issue Areas Identified for the Metal Finishing Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Appen | dix B:<br>F006 Management Contained in EPA's 1995 Biennial Report Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Appen | dix C:<br>Observed F006 Handling Practices at Metal Finishing Facilities and List of Worker Health<br>and Safety Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Appendix D:                                                                                         |
|-----------------------------------------------------------------------------------------------------|
| Checklist Used to Identify Pollution Prevention Technologies at Metal Finishing Facilities          |
| Appendix E:<br>Laboratory Analysis Information: Constituents, Methods, and Detection Limits Used in |
| the Benchmarking Studies                                                                            |
| Appendix F:                                                                                         |
| Regional Benchmarking Survey                                                                        |
| Appendix G:                                                                                         |
| National Benchmarking Survey                                                                        |
| Appendix H:                                                                                         |
| National Benchmarking Commercial Recyclers Survey         140                                       |
| Appendix I:                                                                                         |
| Responses to Citizen Group Phone Survey                                                             |
| Appendix J:                                                                                         |
| Statistical "Representativeness" of the National Benchmarking Study 146                             |

#### **EXECUTIVE SUMMARY**

This report presents current information about the metal finishing industry in the U.S., and is the result of a two year effort of the Metal Finishing workgroup of the Common Sense Initiative (CSI). The CSI was begun by the Environmental Protection Agency (EPA) in 1994 to explore "cleaner, cheaper, and smarter" environmental strategies beyond those required by regulation. Using the special authorities of the Federal Advisory Committee Act (FACA), EPA brought together representatives from federal, state, and local governments, industry, community-based and national environmental interest groups, environmental justice groups and organized labor to explore opportunities for managing environmental issues in new ways. Six industry sectors were chosen for the initial CSI efforts, including petroleum refining, automobile manufacturing, iron and steel production, electronics, printing and metal finishing.

#### **Overview of the Metal Finishing Industry and Hazardous Waste Management.**

Metal finishing refers to processes which deposit or "plate" a thin layer of metal and/or apply an additional organic topcoat as an outer coating on products received from other manufacturing operations. Metal finishing is performed for either functional or decorative purposes and affects many products we use everyday. For example, hard chrome plating is a functional plating process that increases the hardness and durability of engine parts. Chrome plating automobile bumpers is an example of a decorative plating process.

EPA estimated that there were approximately 13,400 metal finishing establishments in the United States. Of the total, approximately 10,000 metal finishing facilities are estimated to be "captive" shops contained inside a larger manufacturing operation. The balance of 3,400 metal finishing facilities are "job shops" or "independent" metal finishing operations that operate on a job-specific contract basis.<sup>1</sup> The total number of plating shops has decreased significantly since the 1970's, mainly as a result of increasing regulations and competition.

As in many manufacturing processes, some portion of the materials used in production or in the product itself are not totally captured as salable product, and exit the process in wastewater, solid waste, airborne emissions, scrap metal, or off-spec products. Prior to 1980, there were no federal regulations covering the discharge or disposal of wastes from metal finishing operations, and the wastes, which contained metals as well as other substances, were often directly discharged to surface waters or disposed of in landfills or lagoons.

In 1980, EPA issued the Nation's first hazardous waste management regulations, which "listed" sludges from electroplating wastewater treatment as a hazardous waste (F006), and set standards for the storage, transportation, treatment and disposal of these sludges. EPA simultaneously developed regulations that require metal finishers to significantly reduce or eliminate pollutants in wastewaters discharged to publically owned wastewater treatment systems

<sup>&</sup>lt;sup>1</sup> Borst, Paul A. U.S. EPA, Office of Solid Waste. <u>Recycling of Wastewater Treatment Sludges from</u> <u>Electroplating Operations, F006</u>. 1997.

(final "pretreatment regulations were issued in 1986).

As a result of the strengthening of the federal regulations, the metal finishing industry implemented many improvements in material use, production processes and waste management methods.

Metals contained in F006 have commercial value if they are present in sufficient concentrations and if other analytes in the sludge are below levels which would interfere with the metal recovery process. There may be other materials contained in the sludge which do not interfere with metals recovery, but which could be hazardous if improperly managed. The economics of hazardous waste management is a strong determinant of whether metal finishers send sludges for land disposal or to recycling facilities. Estimates of the amounts of sludge that are recycled or land disposed vary widely. One source estimates that between 10 and 20 percent is recycled and between 80 and 90 percent is treated and land disposed.<sup>2</sup>

#### Why was this study conducted?

The CSI Metal Finishing Subcommittee focused on the metal finishing industry's belief that process improvements made by many metal finishers during the past 20 years have significantly changed the composition of the F006 material that was listed and regulated in 1980, and it is the industry's belief that modification of EPA's hazardous waste regulations for F006 could increase the metal finishing industry's ability to recover and recycle more commercially valuable metals from F006 than they currently recover, and simultaneously decrease the amount of metal finishing wastes disposed of in regulated landfills.

In order to evaluate the current status of the industry, the Subcommittee formed a workgroup to complete a characterization of F006 and to report on the results as the foundation for any further discussions regarding potential modifications to F006 regulations.

This report simply presents the data collected during the F006 Benchmarking Study as a foundation for further evaluation of F006. The CSI Workgroup did not attempt to analyze the data to determine the extent to which the characteristics of F006 have changed based on industry pollution prevention practices or other factors. In Phase 2 of this effort, the Workgroup will analyze the information presented in this report, and examine whether potential modifications of the current regulations applicable to F006 should be considered by EPA.

## Worker Health and Safety

As part of the benchmarking study, the workgroup collected information on F006 handling practices, identified the potential hazards to workers, and described possible hazard control

<sup>&</sup>lt;sup>2</sup> Borst, Paul A. U.S. EPA, Office of Solid Waste. <u>Recycling of Wastewater Treatment Sludges from</u> <u>Electroplating Operations, F006</u>. 1997.

methods. In addition, the workgroup developed a list of the current worker health and safety regulations and policies that may apply to on-site and off-site management of F006. This information is presented in Appendix C of this report. Beyond this information, the workgroup did not attempt to complete a comprehensive review of worker health and safety issues associated with F006 management.

As indicated above, in Phase II of this effort the workgroup will examine whether possible modifications of the current regulations for F006 should be considered based on the information in this study. As part of this effort, the workgroup will consider potential worker health and safety issues when examining possible regulatory changes for F006.

#### The F006 Benchmarking Study Approach

The workgroup focused on three analytical questions to guide its work on characterizing current practices in the metal finishing industry, and the composition and management of F006:

- 1) What are the characteristics of F006?
- 2) What can metal finishers do to make F006 more recyclable, while optimizing pollution prevention? What pollution prevention practices are in place at metal finishing facilities?
- 3) What are the environmental impacts of F006 recycling?

While not an initial focus in this effort, the workgroup also examined worker health and safety impacts in this study.

To answer these questions, the workgroup designed a five part "benchmarking study" to gather current information on the metal finishing industry. This approach carefully balances the need to gather detailed information from a diverse industry with funding and schedule limitations. The workgroup believes the study approach and the data presented in this report provide a very useful characterization of a cross section of "typical" metal finishing facilities and a strong sense for the environmental awareness of many metal finishing industry which do not fit within the range of activities and practices characterized in this report, and that discussion of the data presented in this report should take that into account. The workgroup also discussed the possibility that, despite the usefulness of the data gathered in the Benchmarking study, additional data might be needed if subsequent discussions of policy options and/or regulatory options analysis warranted more data.

The study components summarized below, which are discussed in detail in the report, include:

A *Regional Benchmarking Study* that involved site visits to 29 metal finishing shops in three cities to gather detailed data on plating processes, pollution prevention practices, F006 chemical analysis and F006 handling and management practices;

A *National Benchmarking Study* that used a mail survey to gather less detailed data on metal finishing operations, pollution prevention practices, F006 characteristics and management practices from a broad range of metal finishers;

An *Analysis of Statistical Representation* to determine the extent to which the companies participating in the regional and national benchmarking studies represent the universe of metal finishers.

A *Commercial Recycling Company Mail Survey* to gather data on the amount and chemical composition of F006 accepted for recycling by commercial recycling companies, and

A *Community Interest Group Phone Survey* to assess whether community groups in the vicinity of commercial recycling companies believe those companies are good environmental and economic neighbors.

# **Results of the National F006 Benchmarking Study**

The results of the five components of the study are presented in the main body of the report. The results of the Regional and National Benchmarking Studies are presented in summary form and in detail. The data describe the range of production, pollution prevention and waste management practices employed by the facilities studied and the present information about the quantity and composition of F006 wastes produced. For example, the minimum, mean, median, and maximum values of F006 laboratory analyses are provided in a format that allows the reader to compare regional and national data. Detailed data for each of the 29 facilities that participated in the Regional study, and detailed results from the National study are also presented.

The workgroup's statistical analysis examined the extent to which the data gathered in the Regional and National Benchmarking studies represents the metal finishing universe, keeping in mind that the Regional and National Benchmarking studies were designed to give the workgroup descriptive data for facilities which operate the most commonly used metal finishing processes. The Benchmarking study was not designed to capture data on the full range of metal finishing operations. In short, the statistical analysis that was completed indicates that the Benchmarking Study results can not be assumed to statistically represent the entire metal finishing universe. This result does not diminish the value of the Benchmarking study data. The Benchmarking Study does provide substantial additional data characterizing the F006 wastestream and provides a sound starting point for further discussion.

The workgroup was not able to obtain enough data to complete the commercial recycling study, therefore no results are presented. Results of the community group survey, which was designed to accompany the results of the commercial recycling survey, are summarized even though the commercial recycling study was not completed.

The Appendices of this report contain further details supporting various aspects of the study.

#### **Project participants:**

The following people participated in this project:

John Linstedt (Artistic Plating, Inc.), Diane Cameron (Natural Resources Defense Council), Bill Sonntag, Al Collins, and participating members of the American Electroplaters and Surface Finishers Society, National Association of Metal Finshers, and the Metal Finishing Suppliers Association, Andy Comai (United Auto Workers), Tom Wallin (Illinois EPA), Doreen Sterling (US EPA), Mike Flynn (US EPA), Jim Lounsbury (US EPA), Jeff Hannapel (US EPA) John Lingelbach (facilitator, Decisions and Agreements, LLC) and, the SAIC Contractor Support Team.

# I. BACKGROUND

# A. What is the Common Sense Initiative?

In 1994, the Administrator of the Environmental Protection Agency, Carol Browner, launched the Common Sense Initiative (CSI), describing it as a "fundamentally different system" to explore industry-specific strategies for environmental protection. The program is designed to promote "cleaner, cheaper, and smarter" environmental performance, using a non-adversarial, stakeholder consensus process to test innovative ideas and approaches. Six industry sectors were selected to participate in CSI: Petroleum Refining, Auto Manufacturing, Iron and Steel, Metal Finishing, Printing, and Computers and Electronics.

In January of 1995, the Environmental Protection Agency (EPA) chartered the Metal Finishing Sector Subcommittee of the Common Sense Initiative under the Federal Advisory Committee Act. The Metal Finishing Subcommittee includes representatives of EPA Headquarters and Regional offices, the metal finishing industry and its suppliers, state government, Publicly Owned Treatment Works (POTWs), national and regional environmental organizations, the environmental justice community, and organized labor.

The CSI Metal Finishing Sector was challenged by Administrator Carol Browner to develop a consensus package of "cleaner, cheaper, and smarter" policy actions for the industry as a whole, based on the lessons learned from the Sector's projects and dialogue. Based on this challenge the Subcommittee established a workgroup to develop a strategic policy and program framework for the industry.

The Metal Finishing Strategic Goals Program, designed by this multi-stakeholder group, establishes a set of voluntary National Performance Goals for the industry that represent "better than compliance" environmental performance for metal finishers. The Metal Finishing Goals Program, summarized in Table 1, includes facility-based numerical performance targets which track the CSI themes of cleaner, cheaper, and smarter performance.

The goals program also includes a detailed Action Plan that addresses nine important issue areas (listed in Appendix A) for the metal finishing industry. By implementing the Action Plan, stakeholders provide incentives, create tools, and remove barriers for metal finishers to achieve the National Performance goals. Today's report presents the results of the first phase of the Waste Minimization and Recovery issue area.

The Waste Minimization and Recovery Issue examines the metal finishing industry's belief that process improvements made by many metal finishers during the past 20 years have significantly changed the nature of the industry's wastewater treatment sludges, which are regulated as a hazardous waste known as F006 under the Resource Conservation and Recovery Act (RCRA). The metal finishing industry also believes that modification of EPA's hazardous waste regulations for F006 could increase the metal finishing industry's ability to recover more commercially valuable metals (contained in F006) than they currently recover, and simultaneously decrease the amount of metal finishing wastes disposed of in regulated landfills.

# Table 1: National Metal Finishing Performance Goals (By Year 2002)

#### (1) Improved Resource Utilization ("Smarter")

(a) 98% of metals ultimately utilized on product.

(b) 50% reduction in water purchased/used (from 1992 levels).

(c) 25% reduction in facility-wide energy use (from 1992 levels)

#### (2) Reduction in Hazardous Emissions and Exposures (i.e., "Cleaner")

(a) 90% reduction in organic TRI emissions and 50% reduction in metals emissions to air and water (from 1992 levels).

(b) 50% reduction in land disposal of hazardous sludge and a reduction in sludge generation (from 1992 levels).

(c) Reduction in human exposure to toxic materials in the facility and the surrounding community, clearly demonstrated by action selected and taken by the facility. Such actions may include, for example,

pollution prevention, use of state-of the-art emission controls and protective equipment, use of best recognized industrial hygiene practices, worker training in environmental hazards, or participation in the Local Emergency Planning Committees.

#### (3) Increased Economic Payback and Decreased Costs ("Cheaper")

(a) Long-term economic benefit to facilities achieving Goals 1 and 2.

(b) 50% reduction in costs of unnecessary permitting, reporting, monitoring, and related activities (from 1992 levels), to be implemented through burden reduction programs to the extent that such efforts do not adversely impact environmental outcomes.

#### (4) Industry-Wide Achievement of Facility Goals.

(a) 80% of facilities nationwide achieve Goals 1 - 3.

#### (5) Industry-Wide Compliance with Environmental Performance Requirements.

(a) All operating facilities achieve compliance with Federal, State, and local environmental performance requirements.

(b) All metal finishers wishing to cease operations have access to a government sponsored "exit strategy" for environmentally responsible site transition.

(c) All enforcement activities involving metal fishing facilities are conducted in a consistent manner to achieve a level playing field, with a primary focus on those facilities that knowingly disregard environmental requirements.

Note: At facilities where outstanding performance levels were reached prior to 1992, the percentage-reduction targets for Goals 1 (b) and (c), and 2 (a) and (b) may not be fully achievable, or the effort to achieve them may not be the best use of available resources. In these instances, a target should be adjusted as necessary to make it both meaningful and achievable.

The group formed to address this issue is the Metal Finishing F006 Benchmarking Workgroup, comprised of representatives from the metal finishing, the recycling industry, environmental interests, organized labor, local government and the EPA. The workgroup has completed a two year effort to gather new information on the generation, characteristics and management of electroplating wastewater treatment sludges (F006). The workgroup's approach and results are described in detail in the remainder of this report.

#### B. The Metal Finishing Industry and Electroplating Wastewater Treatment Sludges

EPA estimated that there were approximately 13,400 metal finishing establishments in the United States.<sup>3</sup> Of the total, approximately 10,000 metal finishing facilities are estimated to be "captive" shops where the metal finishing operation is contained inside a larger manufacturing operation. The balance of 3,400 metal finishing facilities are "job shops" or "independent" metal finishing operations. Job shops are usually small businesses that operate on a job-specific contract basis.<sup>4</sup> The total number of plating shops has decreased since the 1970's, mainly as a result of increasing regulatory burden and competition. One source estimates that the number of metal finishers decreased to as low as 7,200 in 1992.<sup>5</sup>

Metal finishing refers to processes which deposit or "plate" a thin layer of metal and/or an additional organic topcoat as an outer coating on products received from other manufacturing operations. Metal finishing is performed for either functional or decorative purposes and affects many products we use everyday. A large percentage of all metal or metalized products require surface finishing before the product is ready for final use. Some examples of functional uses include: hard chrome plating to increase hardness and durability in engine parts; zinc plating to increase the corrosion resistance of fasteners; tin and silver plating electrical contacts in electrical distribution switches for electrical enhancement and corrosion resistance; and gold plating in high quality communications applications. Chrome plating automobile bumpers is an example of a decorative plating process.<sup>6</sup>

Metal plating involves a sequence of steps, including metal surface preparation and cleaning, metal deposition, rinsing, and wastewater treatment. The electroplating step involves immersing an object into a solution of metal ions and applying an external reductive source. Control of the electrical current, solution temperature, pH, and solution chemistry determines the thickness of the deposit. Other forms of metal finishing and plating are used by some shops, e.g., electroless plating, however, they are not the focus of this study. Table 2, below, lists frequently used metals and their applications.

## C. F006 Sludge Generation and Management

<sup>&</sup>lt;sup>3</sup> USEPA, Office of Policy, Planning and Evaluation. <u>SUSTAINABLE INDUSTRY: Promoting</u> <u>Environmental Protection in the Industrial Sector, Phase 1 Report</u>. June 1994.

<sup>&</sup>lt;sup>4</sup> Borst, Paul A. U.S. EPA, Office of Solid Waste. <u>Recycling of Wastewater Treatment Sludges from</u> <u>Electroplating Operations, F006</u>. 1997.

<sup>&</sup>lt;sup>5</sup> Kirk-Othmer. <u>Encyclopedia of Chemical Technology</u> (4th ed.), 199--888, v.9

<sup>&</sup>lt;sup>6</sup> USEPA, Office of Solid Waste, <u>Hazardous Waste F006 Listing Background Document</u>, p.107.

As in many manufacturing processes, some portion of the materials used in production or in the product itself are not totally captured as salable product, and exit the process in wastewater, solid waste, airborne emissions, scrap metal, or off-spec products. Captive shops, which repeat the same plating operations over time, use a relatively homogeneous mix of

| Table 2. Freque                                                          | ently Used Metals and Their Applications                                                             |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Property/Function                                                        | Principal Plating Metals                                                                             |
| Decorative                                                               | Chromium, copper, nickel, brass, bronze, gold, silver, platinum, zinc                                |
| Corrosion resistance                                                     | Nickel, chromium, electroless nickel, zinc, cadmium, copper, copper alloys, silver, tin, gold        |
| Wear, lubricity, hardness                                                | Chromium, electroless nickel, bronze, nickel, cadmium, silver, tin, metal composites                 |
| Bearings                                                                 | Copper, bronze, silver, silver alloys, lead-tin                                                      |
| Joining, soldering, brazing, electrical contact resistance, conductivity | Nickel, electroless nickel, electroless copper, copper, cadmium, gold, silver, lead-tin, tin, cobalt |
| Barrier coatings, anti-diffusion, heat-<br>treatment                     | Nickel, cobalt, iron, copper, bronze, tin-nickel, palladium                                          |
| Electromagnetic shielding                                                | Copper, electroless copper, nickel, electroless nickel, zinc                                         |
| Paint/lacquer base, rubber bonding                                       | Zinc, tin, chromium, brass                                                                           |
| Electroforming manufacturing                                             | Copper, nickel                                                                                       |
| Electronics manufacturing                                                | Electroless copper, copper, electroless nickel, nickel, gold, palladium                              |
| Dimensional buildup, salvage of worn parts                               | Chromium, nickel, electroless nickel, iron, silver                                                   |

Source: Electroplating Engineering Handbook, 1996.

chemicals and, consequently, generate a relatively contant mix of wastes. Job shops are more likely to change processes to meet the demand of a range of customers, which changes the mix of materials used to plate products and the mix and concentration of wastes generated. This difference in operations drives differences in the wastes generated by these shops.

F006 sludge is formed by adding precipitation chemicals in electroplating wastewater treatment systems. The precipitation chemicals are used to remove toxic metals and other hazardous constituents from the wastewater, a large portion of which settle to the bottom as sludge. The sludge (F006) is a very wet metal hydroxide mixture that is removed from the treatment tank and usually "dewatered" in large presses, leaving a wet mud that is generally 25 percent solids by weight. Sludges are sometimes dried to further reduce moisture content and weight. The sludge is stored in containers, such as, "super sacks," or larger "roll off boxes," and is sent by truck or rail to RCRA permitted treatment and disposal facilities, or to hazardous waste

permitted recycling facilities, which recover economically valuable metals from the sludge and land dispose the remaining material.

The metals contained in F006 have commercial value if they are present in sufficient concentrations and if other analytes in the sludge are below levels which would interfere with the metal recovery process. There may be other materials contained in the sludge which do not interfere with metals recovery, but which could be hazardous if improperly managed. Recycling facilities generally blend F006 shipments from several generators to meet recycling specifications for a particular target metal in the sludge. Secondary smelting, which is the most frequently used recovery technology, "melts" a target metal (e.g., copper) from mixtures of F006, scrap copper, and other copper containing secondary materials. Often multiple metals are captured. Smelting wastes are generally land disposed.

Estimates of the amounts of sludge that are recycled or land disposed vary widely. One source estimates that between 10 and 20 percent is recycled and between 80 and 90 percent of F006 is treated and disposed of through stabilization and placement in RCRA hazardous waste landfills.<sup>7</sup> In 1993, the National Association of Metal Finishers estimated that approximately 15 to 20 percent of F006 is recycled for metal recovery.<sup>8</sup> EPA's Biennial Reporting System (BRS) indicates that 824 metal finishers which are large quantity (more than 1,000 kg/month) generators of hazardous waste) recycled 282,000 tons of F006 in 1995, and 283 large quantity metal finishing generators treated <sup>9</sup> and disposed of 99,000 tons of F006 in RCRA regulated landfills per year. The results contained in today's report are inconclusive and do not narrow the wide variation in recycling estimates. These figures are explained in more detail in Appendix B.<sup>10</sup>

## D. Basis for Listing F006-Electroplating Wastewater Treatment Sludges as a RCRA Hazardous Waste in 1980

In the early 1970's, the U.S. enacted legislation to reduce discharges of pollutants to U.S. waters. In subsequent years, EPA, States and local governments developed wastewater pretreatment regulations which require industry, including metal finishers, to significantly reduce or eliminate pollutants from their wastewater before sending their wastewater to publicly owned

<sup>8</sup> op. cit.

<sup>&</sup>lt;sup>7</sup> Borst, Paul A. U.S. EPA, Office of Solid Waste. <u>Recycling of Wastewater Treatment Sludges from</u> <u>Electroplating Operations, F006</u>. 1997.

<sup>&</sup>lt;sup>9</sup> Prior to land disposal, F006 must be treated to meet the treatment standards specified in EPA's Land Disposal Restrictions regulations, 40 CFR Part 268, to immobilize toxic constituents, mainly metals. Stabilization is one technology that may be utilized, however, other technologies may be used.

<sup>&</sup>lt;sup>10</sup> The Biennial Reporting System is not designed to provide "treatment train" (e.g., stabilization followed by landfilling) information. Therefore, in an effort to avoid double counting, these quantities were calculated from facilities reporting F006 management as either recycling or landfilling. In other words, the majority of the wastes go through some interim management steps (e.g., stabilization, blending) not accounted for in these calculations. It would be virtually impossible to account for the final management of sludge going through offsite treatment prior to final disposition. In this case, only about 25% of the volume generated is accounted for.

sewer treatment systems (40 CFR Part 413). Final Federal standards were promulgated July,1986 (at 40 CFR §§413 and 433).

Solid waste legislation in 1976, i.e., RCRA, required EPA to designate categories of industrial waste which are "hazardous," and to issue regulations which ensure safe generation, storage, transportation, treatment and disposal of these wastes. Metal finishers were among the first industries to be regulated under the hazardous waste regulations in 1980.

EPA "listed" the wastewater treatment sludges from certain electroplating operations as a hazardous waste (hazardous waste code F006) under Subtitle C of RCRA<sup>11</sup> in 1980 based on a variety of factors (45 F.R. 74884, November 12, 1980). Key to this decision were typically high levels of cadmium, nickel, hexavalent chromium and complexed cyanides in the sludge that could pose a substantial present or potential hazard to human health and the environment if improperly managed. The Extraction Procedure Toxicity Characteristic (or EP) test used at that time (at 43 FR 58956-58957); and the ASTM distilled water leaching test, showed that these metals leached out of the sludge in significant concentrations, which increased the possibility of groundwater contamination if these wastes were improperly disposed. Leaching tests run by the American Electroplaters' Society (AES) under an EPA grant yielded cyanide leach concentrations of 0.5 to 170 mg/l, cadmium levels of non-detectable to 268 mg/l, and chromium levels of 0.12 to 400 mg/l.

At that time, EPA also estimated that a majority of metal finishers discharged their wastewater to POTWs without treating the wastewater. The remainder discharged to waters of the U.S., on-site lagoons, or surface impoundments. Based upon data collected from 48 facilities that did not treat their waste in 1976, EPA estimated that 20 percent disposed of their solid waste on-site while 80 percent sent their solid waste off-site for disposal in a municipal or commercial landfill.

Prior to the issuance of RCRA hazardous waste regulations in 1980, there were no Federal requirements for management of metal finishing sludges. Disposal practices included landfilling, lagooning, drying beds and drum burial. These sites frequently lacked leachate and runoff control practices, which increased the risk of percolation of heavy metals and cyanides into soils, groundwater and surface waters. Numerous damage incidents (e.g., contaminated wells, destruction of animal life) attributable to improper electroplating waste disposal were reported, indicating that mismanagement was an actual, rather than a perceived or potential threat. The long term persistence of heavy metals in the environment increased the potential for risk. The data EPA used for its listing determination came from various sources. Some of the data was over 20 years old while other data used in the determination was current at that time.

Tables 3a and 3b are taken from EPA's F006 listing regulatory support documents (1980). Table 3a summarizes the chemical composition of typical electroplating baths used in the 1970's. Table 3b summarizes information on heavy metal concentrations in sludges.

<sup>&</sup>lt;sup>11</sup> A solid waste may be classified as a hazardous wastes if: 1) it exhibits a characteristic for ignitability, corrosivity, reactivity, or toxicity (40 CFR Part 261 Subpart C), or 2) if, classified as a listed waste (40 CFR Subpart D).

| Table 3a: Typical Electroplating Baths and Their Chemical Composition |                                                                                                       |                                      |  |  |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Plating Compound                                                      | Constituents                                                                                          | Concentration (g/l)                  |  |  |  |  |  |
| 1. Cadmium Cyanide                                                    | Cadmium oxide<br>Cadmium<br>Sodium cyanide<br>Sodium hydroxide                                        | 22.5<br>19.5<br>77.9<br>14.2         |  |  |  |  |  |
| 2. Cadmium Fluoborate                                                 | Cadmium fluoborate<br>Cadmium (metal)<br>Ammonium fluoborate<br>Boric acid<br>Licorice                | 251.2<br>94.4<br>59.0<br>27.0<br>1.1 |  |  |  |  |  |
| 3. Chromium Electroplate                                              | Chromic acid<br>Sulfate<br>Fluoride                                                                   | 172.3<br>1.3<br>0.7                  |  |  |  |  |  |
| 4. Copper Cyanide                                                     | Copper cyanide<br>Free sodium cyanide<br>Sodium carbonate<br>Rochelle salt                            | 26.2<br>5.6<br>37.4<br>44.9          |  |  |  |  |  |
| 5. Electroless Copper                                                 | Copper nitrate<br>Sodium bicarbonate<br>Rochelle salt<br>Sodium hydroxide<br>Formaldehyde (37%)       | 15<br>10<br>30<br>20<br>100 ml/l     |  |  |  |  |  |
| 6. Gold Cyanide                                                       | Gold (as potassium gold cyanide)<br>Potassium cyanide<br>Potassium carbonate<br>Depotassium phosphate | 8<br>30<br>30<br>30                  |  |  |  |  |  |
| 7. Acid Nickel                                                        | Nickel sulfate<br>Nickel chloride<br>Boric acid                                                       | 330<br>45<br>37                      |  |  |  |  |  |
| 8. Silver Cyanide                                                     | Silver cyanide<br>Potassium cyanide<br>Potassium carbonate<br>Metallic silver<br>Free cyanide         | 35.9<br>59.9<br>15.0<br>23.8<br>41.2 |  |  |  |  |  |
| 9. Zinc Sulfate                                                       | Zinc sulfate<br>Sodium sulfate<br>Magnesium sulfate                                                   | 374.5<br>71.5<br>59.9                |  |  |  |  |  |

Source: EPA F006 Listing Background Document, 1980

| Table 3b: Heavy Metal Content for Chromium and Cadmium in Electroplating Sludges (Dry Weight ppm) |          |         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------|---------|--|--|--|--|--|--|
| Primary Plating Process                                                                           | Chromium | Cadmium |  |  |  |  |  |  |
| Segregated Zinc                                                                                   | 200      | <100    |  |  |  |  |  |  |
| Segregated Cadmium                                                                                | 62,000   | 22,000  |  |  |  |  |  |  |
| Zinc Plating and Chromating                                                                       | 65,000   | 1,100   |  |  |  |  |  |  |
| Copper-Nickel-Chromium on Zinc                                                                    | 500      | ND      |  |  |  |  |  |  |
| Aluminum anodizing (chromic process)                                                              | 1,700    | ND      |  |  |  |  |  |  |
| Nickel-Chromium on steel                                                                          | 14,000   |         |  |  |  |  |  |  |
| Multi-process job                                                                                 | 25,000   | 1,500   |  |  |  |  |  |  |
| Electroless Copper on Plastic, Acid Copper, Nickel Chromium                                       | 137,000  | ND      |  |  |  |  |  |  |
| Multi-process with Barrel or Vibratory Finish                                                     | 570      |         |  |  |  |  |  |  |
| Printed Circuits                                                                                  | 3,500    | <100    |  |  |  |  |  |  |
| Nickel-Chromium on Steel                                                                          | 79,200   | <100    |  |  |  |  |  |  |
| Cadmium-Nickel-Copper on Brass and Steel                                                          | 48,900   | 500     |  |  |  |  |  |  |

Source: EPA F006 Listing Background Document, 1980

Only certain metal finishing sludges were listed as hazardous wastes. Others studied were determined to not pose a substantial hazard. Regulated F006 includes:

Wastewater treatment sludges from electroplating operations except from the following processes: (1) sulfuric acid anodizing of aluminum; (2) tin plating on carbon steel; (3) zinc plating (segregated basis) on carbon steel; (4) aluminum or zinc-aluminum plating on carbon steel; (5) cleaning/stripping associated with tin, zinc, and aluminum plating on carbon steel; and (6) chemical etching and milling of aluminum. (see 40 CFR 261.31)

The promulgation of effluent guidelines for the metal finishing industry in 1986 significantly increased the quantities of wastewater treatment sludge generated. This increase occurred because the guidelines required metal finishers to treat their wastewater to remove or reduce pollutants prior to discharge to either a publicly owned treatment works (POTW) or directly to waters of the U.S. To comply with the effluent guidelines, metal finishers added iron, lime and other chemicals to precipitate out or destroy pollutants such as chrome, zinc, copper and cyanide. The precipitate formed F006 sludge, which was then filtered and managed in compliance with RCRA regulations.

Current estimates of annual F006 generation in the United States range from 360,000 tons dry weight equivalent (F006 industry estimate) to 500,000 tons dry weight equivalent 1,252,072

tons/wet weigth (1989 EPA estimate). Most of this material is in the physical form of metal hydroxide sludges.<sup>12</sup>

F006 is subject to the full set of RCRA hazardous waste regulations (e.g., manifesting burden, training, emergency response plans). Metal finishers are also subject to OSHA and EPA worker health and safety regulations to protect workers from the potential effects of any toxic materials or other hazards in the workplace. Appendix C provides a list of the worker health and safety regulations and their applicability to metal finishers.

# E. Reasons this Study was Conducted

The metal finishing industry believed that many metal finishers have significantly changed the way they operate since 1980, and that the chemical makeup of F006 is more amenable to recycling than it was in 1980. The strengthening of wastewater pretreatment, hazardous waste management, and hazardous waste minimization requirements since 1980 have had a positive impact on materials used, improved process operations, and better waste management practices in the metal finishing. These improvements have reduced the pollutants contained in F006. The industry also believed that these changes may be substantial enough to warrant modification of regulatory controls. This report provides current information about the metal finishing industry in the U.S. and presents data characterizing F006.

The metal finishing industry responded to the strengthening of wastewater and hazardous waste regulations with improvements in alternative plating chemistries, production management practices, equipment, and waste management technology. For example, the installation of countercurrent flow, spray rinsing and drag out reduction methods are examples of techniques that reduce wastewater volumes and the amount of metals and other chemicals used. Some metal finishing companies installed pollution prevention methods which are targeted at further reducing or eliminating the use of specific toxic materials. The most notable have been: the replacement of traditional cyanide-based plating solutions (e.g., for zinc and copper plating) with alkaline-based plating solutions; the substitution of trivalent chromium for highly toxic hexavalent chromium for some applications; and the replacement of some single metal systems with alloy systems (e.g., replacing cadmium with zinc-nickel).

In 1980, EPA published regulations which set standards for permitting hazardous waste land disposal facilities, and in 1988, EPA promulgated land disposal restrictions regulations which require metal finishers to treat F006 to meet the treatment standards specified in this rule. The rule requires F006 to be treated to immobilize toxic constituents, mainly metals. Stabilization is one technology that may be utilized, however, other technologies may be used. methods before disposing of the waste in landfills.

The economics of waste disposal result in most F006 being land disposed rather than recycled because recycling is typically more expensive. This means potentially recoverable metals

<sup>&</sup>lt;sup>12</sup> Borst, Paul A. U.S. EPA, Office of Solid Waste. <u>Recycling of Wastewater Treatment Sludges from</u> <u>Electroplating Operations, F006</u>. 1997.

(i.e., those which are land disposed) are no longer available for commerce. Several of the more prominent metals (e.g., nickel and chromium) are strategic metals which are not available in the U.S.

The results of a 1993 study by the National Center for Manufacturing Sciences (NCMS) and the National Association of Metal Finishers (NAMF) show that 90 percent of the 318 facilities that responded (16% response rate of 1,971 facilities queried) use pollution prevention methods and benefitted from them. Water conservation and in process recycling techniques were noted to be more frequently used than chemical recovery. Approximately 60 percent of respondents attempted material substitution to reduce or eliminate one or more of the following materials: cadmium, chromium (hexavalent), cyanide, and chlorinated solvents.<sup>13</sup>

Some metal finishers recover precious or other metals on site (the number of facilities that conduct on-site recovery is not available). Other facilities ship F006 to recycling facilities to recover commercially valuable metals, or to RCRA permitted treatment and disposal facilities. Table 4 summarizes an array of pollution prevention measures that may be used in metal finishing operations.

## Worker Health and Safety

As part of the benchmarking study, the workgroup collected information on F006 handling practices, identified the potential hazards to workers, and described possible hazard control methods. In addition, the workgroup developed a list of the current worker health and safety regulations and policies that may apply to on-site and off-site management of F006. This information is presented in Appendix C of this report. Beyond this information, the workgroup did not attempt to complete a comprehensive review of worker health and safety issues associated with F006 management.

This report presents data collected during the F006 Benchmarking Study as a foundation for further evaluation of F006. The CSI Workgroup did not attempt to analyze the data to determine the extent to which the characteristics of F006 have changed based on industry pollution prevention practices or other factors. In Phase 2 of this effort, the Workgroup will analyze the information presented in this report, and examine whether potential modifications of the current regulations applicable to F006 should be considered by EPA.

| Table 4: Examples of Pollution Prevention Measures |                               |  |  |  |  |  |
|----------------------------------------------------|-------------------------------|--|--|--|--|--|
| Method                                             | Pollution Prevention Benefits |  |  |  |  |  |
| Improved Operating Practices                       |                               |  |  |  |  |  |

<sup>&</sup>lt;sup>13</sup> NCMS/NAMF. <u>Pollution Prevention and Control Technology for Plating Operations</u>. 1994.

| Table 4: Examples of Pollution Prevention Measures                                                                                                                     |                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Method                                                                                                                                                                 | Pollution Prevention Benefits                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Remove cadmium and zinc anodes from bath<br>when it is idle. Anodes baskets can be placed on<br>removable anode bars that are lifted from tank by<br>an overhead hoist | <ul> <li>Eliminates cadmium/zinc buildup causing decanting of solution due to galvanic cell set up between steel anode basket and cadmium/zinc anodes</li> <li>Maintains bath within narrow Cd/Zn concentration providing more predictable plating results</li> </ul> |  |  |  |  |  |  |
| Eliminate obsolete processes and/or unused or infrequently used processes                                                                                              | <ul> <li>Reduces risks associated with hazardous chemicals</li> <li>Creates floor space to add countercurrent rinses or other P2 methods</li> <li>Creates safer and cleaner working environment</li> </ul>                                                            |  |  |  |  |  |  |
| Waste stream segregation of contact and non-<br>contact wastewaters                                                                                                    | <ul> <li>Eliminates dilution of process water prior to treatment which can increase treatment efficiency</li> <li>Reduces treatment reagent usage and operating costs</li> </ul>                                                                                      |  |  |  |  |  |  |
| Establish written procedures for bath make-up<br>and additions. Limit chemical handling to trained<br>personnel. Keep tank addition logs                               | <ul> <li>Prevents discarding process solutions due to incorrect<br/>formulations or contamination</li> <li>Improves plating solution and work quality consistency</li> <li>Improves shop safety</li> </ul>                                                            |  |  |  |  |  |  |
| Install overflow alarms on all process tanks to<br>prevent tank overflow when adding water to make<br>up for evaporative losses                                        | <ul> <li>Minimizes potential for catastrophic loss of process solution<br/>via overflow</li> <li>Prevents loss of expensive chemicals</li> </ul>                                                                                                                      |  |  |  |  |  |  |
| Conductivity and pH measurement instruments<br>and alarm system for detecting significant<br>chemical losses                                                           | <ul> <li>Identifies process solution overflows and leaks before total<br/>loss occurs</li> <li>Alerts treatment operators to potential upset condition</li> <li>Reduces losses of expensive plating solutions</li> </ul>                                              |  |  |  |  |  |  |
| Control material purchases to minimize obsolete material disposal                                                                                                      | <ul><li>Reduces hazardous waste generation</li><li>Reduces chemical purchases</li></ul>                                                                                                                                                                               |  |  |  |  |  |  |
| Use process baths to maximum extent possible<br>before discarding. Eliminate dump schedules.<br>Perform more frequent chemical analysis                                | <ul> <li>Prevents discarding of solutions prematurely</li> <li>Reduces chemical costs</li> <li>Chemical adjustments of baths will improve work quality</li> </ul>                                                                                                     |  |  |  |  |  |  |
| Reduce bath dumps by using filtration to remove suspended solids contamination                                                                                         | <ul> <li>Extends bath life</li> <li>Reusable filter cartridges reduce solid waste generation</li> <li>Improves bath performance</li> </ul>                                                                                                                            |  |  |  |  |  |  |
| Deburring containment                                                                                                                                                  | • Segregates waste                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Ultrafiltration, oil removal                                                                                                                                           | • Removes contaminants from cleaning wastes, promotes recycling                                                                                                                                                                                                       |  |  |  |  |  |  |
| Process/Chemical Substitution                                                                                                                                          |                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Substitute cyanide baths with alkaline baths when possible                                                                                                             | • Eliminates use of CN                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Substitute trivalent chromium for hexavalent chromium when product specifications allow.                                                                               | Reduces/eliminates use of hexavalent chromium                                                                                                                                                                                                                         |  |  |  |  |  |  |

| Table 4: Examples of Pollution Prevention Measures                                                                                                                                              |                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Method                                                                                                                                                                                          | Pollution Prevention Benefits                                                                                                                                                                                                                                       |  |  |  |  |  |
| Eliminate use of cadmium plating if product specifications allow                                                                                                                                | • Eliminates the use of cadmium                                                                                                                                                                                                                                     |  |  |  |  |  |
| Eliminate cyanide copper                                                                                                                                                                        | • Eliminates use of CN                                                                                                                                                                                                                                              |  |  |  |  |  |
| Introduce deposit substitutes: e.g., Zn-Ni alloy replaces cadmium                                                                                                                               | • Eliminates use of Cd                                                                                                                                                                                                                                              |  |  |  |  |  |
| Drag-Out Reduction Methods that Reduce Waste                                                                                                                                                    | Generation                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Install fog rinses or sprays over process tanks to remove drag out as rack/part exits bath                                                                                                      | • Can inexpensively recover a substantial portion of drag out and does not require additional tankage                                                                                                                                                               |  |  |  |  |  |
| Minimize the formation of drag out by:<br>redesigning parts and racks/barrels to avoid cup<br>shapes, etc. that hold solution; properly racking<br>parts; and reducing rack/part withdraw speed | <ul> <li>Reduces pollutant mass loading on treatment processes,<br/>treatment reagent usage, and resultant sludge generation</li> <li>May improve treatment operation/removal efficiency</li> <li>Reduces chemical purchases and overall operating costs</li> </ul> |  |  |  |  |  |
| Introduction of barrel spray rinsing                                                                                                                                                            | • Reduces pollutant mass loading on treatment processes, treatment reagent usage, and resultant sludge generation                                                                                                                                                   |  |  |  |  |  |
| Automation control                                                                                                                                                                              | Reduces process error and process waste                                                                                                                                                                                                                             |  |  |  |  |  |
| Rinse Water Reduction Methods that Reduce Was                                                                                                                                                   | ste Generation                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Install flow restrictors to control the flow rate of water                                                                                                                                      | <ul> <li>Reduces water use and aids in reducing variability in wastewater flow</li> <li>Very inexpensive to purchase and install</li> </ul>                                                                                                                         |  |  |  |  |  |
| Install conductivity or timer rinse controls to<br>match rinse water needs with use                                                                                                             | <ul> <li>Coordinates water use and production when properly<br/>implemented</li> <li>Provides automatic control of water use</li> </ul>                                                                                                                             |  |  |  |  |  |
| Use counter-current rinse arrangement with two<br>to four tanks in series depending on drag out rate                                                                                            | <ul> <li>Major water reduction can be achieved</li> <li>High impact on water bills</li> <li>May reduce the size of needed recovery/treatment equipment</li> </ul>                                                                                                   |  |  |  |  |  |
| Track water use with flow meters and<br>accumulators. Keep logs on water use for<br>individual operations                                                                                       | <ul> <li>Identifies problem areas including inefficient processes or<br/>personnel</li> <li>Helps management to determine cost for individual plating<br/>processes.</li> </ul>                                                                                     |  |  |  |  |  |
| Install pulsed spray rinsing                                                                                                                                                                    | Reduced wastewater generation                                                                                                                                                                                                                                       |  |  |  |  |  |

# II. NATIONAL F006 BENCHMARKING STUDY APPROACH

#### A. Overview

The workgroup focused on three analytical questions to guide its work on characterizing current practices in the metal finishing industry, and the composition and management of F006:

What are the characteristics of F006?
 What can metal finishers do to make F006 more recyclable, while optimizing pollution prevention? What pollution prevention measures are in place at metal finishing facilities?
 What are the environmental impacts of E006 meaning?

3) What are the environmental impacts of F006 recycling?

While not an initial focus in this effort, the workgroup also examined worker health and safety impacts in this study.

The workgroup then designed a two year study methodology to address the three analytical objectives. The study methodology is discussed below.

The technical work required for this study was completed by Science Applications International Corporation under contract to EPA. The contract work was managed by an EPA workgroup member working in close coordination with the workgroup. The workgroup monitored progress and critiqued results throughout the analysis process.

## B. Methodology

The workgroup designed a five part "benchmarking" study approach to address the three analytical questions identified above. A Quality Assurance Project Plan was developed and approved for this study and is available in a separate report<sup>14</sup>. The five portions of the study are summarized below and discussed in more detail in the remainder of this section. The five study portions include:

- D. A "Regional Benchmarking Study" that involved site visits to 29 metal finishing shops in three cities to gather detailed data on plating processes, pollution prevention practices, F006 chemical analysis and F006 handling and management practices;
- E. A "National Benchmarking Study" that used a mail survey to gather less detailed data on metal finishing operations, pollution prevention practices, F006 characteristics and management practices from a broad range of metal finishers;

<sup>&</sup>lt;sup>14</sup>USEPA, Office of Solid Waste. <u>Quality Assurance Project Plan For the Metal</u> <u>Finishing Industry</u>. October, 1997.

- An analysis which evaluates the extent to which the regional and national benchmarking studies represent the universe of metal finishers.
- A Survey of Commercial Recycling Companies to gather data on the amount of F006 recycled and the chemical composition of F006 accepted for recycling, and
- A "Community Interest Group Phone Survey" to assess whether community groups in the vicinity of commercial recycling companies believe those companies are good environmental and/or economic neighbors.

Each of the above components of the study involved a series of analytical steps. The approach used to complete each study component is described below. The results are presented in Section III of this report.

1. Regional Benchmarking Study

The workgroup developed a method for identifying and gathering information from metal finishing companies that are judged to be "typical" facilities in the metal finishing universe.

The workgroup identified ten cities that are known to have high populations of metal finishing facilities. Milwaukee, Chicago, and Phoenix were chosen as cities which are representative of the metal finishing industry in terms of the processes they use and the industries they serve.

The workgroup agreed on a list of criteria for selecting facilities, and tried to include, as much as possible, a balanced distribution of the following criteria in making facility selections:

- Type of shop: captive/job,
- Size: number of employees,
- Type of deposition process in use,
- Pollution prevention technologies in use,
- In-house metal recovery technologies:
  - -- counterflow rinse,
  - -- ultrafiltration/microfiltration,
  - -- other ion exchanges,
  - -- electrolytic metal recovery,
  - -- electrodialysis, or
  - -- reverse osmosis; and
- F006 treatment technology:
  - -- alkaline precipitation,
  - -- offsite metals recovery,
  - -- landfilling of F006,
  - -- other.

The workgroup developed additional information regarding the third criteria listed above, "type of deposition process in use. The workgroup identified five plating processes which are among the most frequently used processes in the metal finishing industry. Studying facilities that operate these processes would provide the workgroup with key information about these common processes. The five processes included:

-Zinc (Zn) plated on steel,
-Nickel (Ni)/chromium (Cr) plated on steel, followed by plated on steel,
-Cu/Ni/Cr on non-ferrous alloys,
-Cu plating/stripping in the printed circuit industry, and
-Cr on steel.

These five processes are among the 25 most common processes identified in the NCMS/NAMF study (1994), and were the main criteria in selecting facilities in Milwaukee. Facility selection in Chicago began using the five processes, but resulted in a principal focus on facilities that operate copper/nickel/chromium electroplate on nonferrous processes, a plating process used by one-half of Chicago platers. Facility selection in Phoenix focused on obtaining data from metal finishers that serviced the printed circuit board and aerospace industries.

The workgroup identified a Point of Contact (POC) in each city. The POC and the workgroup identified 10 facilities and several alternates located in or near each of the three benchmarking cities that fit the criteria sought for each city and were willing to participate in the study. At their request, facilities remained anonymous to the workgroup throughout the selection and information gathering process. Facilities are identified as F1, F4, F11, etc.

A facility selection table was completed for each city (see Section IV), and the workgroup made its selections based on the criteria discussed above. An overview of facility selection for each city is discussed below.

Milwaukee: The POC gathered information on 15 facilities, from which the workgroup selected 10 facilities and three alternates. Each of the 10 facilities and three alternates was contacted to schedule a site visit for completing a profile of operations and waste sampling and analysis. Three of the 10 facilities were eliminated during the site visits because it was determined that their sludges are not F006, and the three alternates were added. The third alternate was subsequently eliminated because their sludge is excluded from the definition of F006. Consequently, only nine facilities were included in the Milwaukee benchmarking study.

Chicago: The POC in Chicago identified 14 metal finishers willing to participate in the study, from which the workgroup selected 10 and three alternates. Each of the ten facilities and alternates was contacted to schedule site visits.

Phoenix: The POC in Phoenix identified 13 metal finishers, from which the workgroup selected 10 facilities and three alternates. One facility was eliminated during the site visit because it plated every two months as a batch operation and no F006 sludge was available during the time of the study. An alternate site was added.

A survey was mailed to each facility to gather basic data from facility records (Appendix F contains a copy of the Regional Benchmarking Survey). On-site visits were completed to gather detailed data on metal finishing processes, pollution prevention practices, recycling practices,

F006 quantities, and F006 handling and management practices (handling practices were recorded only in Chicago and Phoenix). The site visit information collection protocol is provided in Appendix D.

In addition to gathering information on plating processes, pollution prevention methods, F006 generation quantities and F006 management, a total of 46 composite samples of F006 were collected from the 29 facilities and transported to an EPA certified laboratory for chemical analysis and quality assurance methods. Two samples of F006 sludge were collected at some facilities (selected at random) as spot checks for variability in chemical content. All samples were analyzed for total concentrations of metals, TCLP metals, and general chemistry analytes. Four of the samples collected in Milwaukee were also analyzed for total volatile and semivolatile organic constituents, and TCLP volatile and semivolatile organic constituents, but since the results of the organic analysis in Milwaukee showed nondetectable levels in nearly all cases, no further organics testing was completed in the remaining two cities. See Appendix E for a list of all chemicals analyzed. The laboratory results were reviewed for accuracy and completeness and provided to each facility for review and comment.

#### 2. National Benchmarking Study

The workgroup developed a survey for gathering data on metal finishing operations, pollution prevention practices, F006 characteristics and sludge management practices from a large sample of the universe of metal finishers. The data categories contained in the survey are similar to the regional benchmarking protocol, but less detailed. Appendix G contains the survey used for the National Benchmarking Study.

Nearly 2,000 surveys were distributed by mail using the mailing list of NAMF and AESF, and by hand at a metal finishers national technical conference. 186 responses (9 percent) were received. The data was compiled into a computer data base.

## 3. Statistical Analysis of the Regional and National Benchmarking Data

A chi-squares analysis was completed to determine the extent to which the facilities included in the regional and national benchmarking studies represent the universe of metal finishers for demographic parameters. Benchmarking results were compared to the universe of F006 generators in the Dunn & Bradstreet and EPA 1995 Biennial Report national databases. The results are presented in Section III.

## 4. Survey of Commercial Recyclers

The workgroup developed a survey to gather data from six commercial recycling companies believed to be representative of the commercial F006 recycling industry. The survey requested data on the amount and chemical composition of F006 they recycle. Few data were received. The results were inclusive and are not provided in this report. A copy of the Recyclers' Survey is contained in Appendix H.

## 5. Survey of Community Environmental Groups

A "community interest group phone survey" was developed by the workgroup to make a preliminary assessment of whether ten community groups community groups in the vicinity of commercial recycling companies believe those companies are good environmental and/or economic neighbors. In order to promote candid responses, the workgroup agreed that respondents could remain anonymous. Each group was asked the following questions:

- Is the group aware of environmental impacts from the recycling facility?
- Is the group aware of economic impacts from the recycling facility?
- Is the facility considered a "good neighbor?"

A summary of responses is provided in Section IV. Individual responses are provided in Appendix I.

# III. RESULTS OF THE F006 BENCHMARKING STUDY

The Regional and National Benchmarking Studies produced a large body of current data concerning facility operations, pollution prevention activities, F006 generation and management, and F006 composition. Section A below presents summaries of the data. Section B presents the data in detail.

# A. Summaries of Regional and National Benchmarking F006 Waste Characterization Data

# 1. Benchmarking Summary Tables

Table 5 summarizes the minimum, mean, median, and maximum analytical results for each chemical analyzed for each of the three cities. The values presented represent only clearly measurable laboratory results. Non-detected samples (i.e., samples below laboratory detection limits) and samples detected but below the laboratory quantitation limit (below the limit for accurate chemical measurement) are not included. Table 6 compares same statistics for the three cities to F006 waste composition data received in the National Benchmarking Survey. Table 7 summarizes the results of the National Survey.

2. Statistical Analysis: Does this Data Come from "Typical" Metal Finishers?

Statistical analyses are often used to determine the extent to which a sample selected from a population represents the larger population from a statistical perspective, require carefully designed sample selection and testing procedures, and are generally time consuming and expensive. Because of its specialized design (i.e., to provide the workgroup with a highly descriptive set of data from metal finishing facilities which run the most "typical" plating processes in the industry), the workgroup was limited in its ability to compare Benchmarking data to other databases which contain information on the metal finishing universe. Notwithstanding the specialized design of the Benchmarking study, the workgroup completed a statistical comparison of Benchmarking results to two national databases which contain some information on the metal finishing universe. The analysis used a chi-squares statistical method to compare the only three parameters (facility size and location, and the amount of F006 waste generated) contained in the benchmarking studies and in other national databases which contain information on metal finishing facilities, i.e., the Dun & Bradstreet (D&B) business/economic database and EPA's 1995 Biennial Reporting System (BRS) database. The analysis results show that the facilities participating are not necessarily representative of the universe of metal finishers. It is possible that a larger number of participants in the Benchmarking Studies or a different mix of participants could have provided results that show a more direct relationship between Benchmarking and national data (D&B and BRS). This result does not diminish the value of the Benchmarking study. The Benchmarking Study provides substantial additional data characterizing the industry's wastestream and provides a sound starting point for further discussion.

#### 3. Results of Commercial Recyclers and Citizen Group Surveys

The workgroup received too few responses to the commercial recyclers survey to draw any conclusions. Responses to the citizen group brief phone interviews received nearly complete responses and revealed no significant adverse opinions regarding whether these facilities are perceived as good environmental and economic neighbors. The results of the citizen group phone survey is summarized Appendix I. This page and the next page become large fold out tables 5& 6. Pull this double sided page and insert tables 5/6 here.

| Constituent               | # of Reported<br>Detections | Minimum | Mean      | Median    | Maximum    |
|---------------------------|-----------------------------|---------|-----------|-----------|------------|
| Total Metals (mg/kg)      |                             |         |           |           |            |
| Aluminum (Al)             | 34                          | 0.59    | 13,387.89 | 1,725.00  | 76,100.00  |
| Antimony (Sb)             | 22                          | 1.80    | 2,188.23  | 67.40     | 34,800.00  |
| Arsenic (As)              | 35                          | 2.00    | 489.67    | 10.00     | 8,780.00   |
| Barium (Ba)               | 38                          | 6.00    | 199.27    | 73.70     | 1,080.00   |
| Beryllium (Be)            | 20                          | 0.59    | 12.55     | 8.50      | 37.00      |
| Bismuth (Bi)              | 7                           | 2.10    | 50.86     | 29.00     | 398.00     |
| Cadmium (Cd)              | 39                          | 2.10    | 6,122.32  | 22.00     | 71,300.00  |
| Calcium (Ca)              | 28                          | 682.00  | 37,239.28 | 17,250.00 | 143,000.00 |
| Chromium (Cr)             | 60                          | 10.00   | 39,601.20 | 13,900.00 | 206,000.00 |
| Copper (Cu)               | 51                          | 33.60   | 55,474.35 | 10,620.00 | 631,000.00 |
| Iron (Fe)                 | 38                          | 364.00  | 82,420.74 | 48,950.00 | 560,000.00 |
| Lead (Pb)                 | 47                          | 5.00    | 5,754.10  | 346.00    | 175,000.00 |
| Magnesium (Mg)            | 14                          | 187.00  | 48,798.09 | 10,800.00 | 336,000.00 |
| Manganese (Mn)            | 28                          | 13.00   | 830.91    | 563.00    | 3,300.00   |
| Mercury (Hg)              | 30                          | 0.05    | 0.39      | 0.30      | 2.00       |
| Nickel (Ni)               | 44                          | 51.00   | 23,456.33 | 5,935.00  | 180,000.00 |
| Selenium (Se)             | 35                          | 1.900   | 7.86      | 6.50      | 16.60      |
| Silver (Ag)               | 30                          | 1.50    | 169.64    | 87.50     | 1,190.00   |
| Sodium (Na)               | 9                           | 25.00   | 18,458.37 | 11,000.00 | 89,200.00  |
| Tin (Sn)                  | 28                          | 9.00    | 20,906.06 | 1,100.00  | 467,000.00 |
| Zinc (Zn)                 | 48                          | 57.00   | 88,692.44 | 24,600.00 | 460,000.00 |
| TCLP (mg/l)               |                             |         |           |           |            |
| Arsenic (As)              | 17                          | ND      | ND        | ND        | NE         |
| Barium (Ba)               | 16                          | 0.26    | 1.29      | 1.45      | 2.20       |
| Cadmium (Cd)              | 18                          | 0.02    | 8.36      | 0.11      | 144.00     |
| Chromium (Cr)             | 20                          | 0.02    | 9.48      | 0.92      | 56.20      |
| Lead (Pb)                 | 18                          | 0.06    | 113.97    | 0.13      | 1,630.00   |
| Mercury (Hg)              | 15                          | 0.001   | 0.005     | 0.005     | 0.011      |
| Selenium (Se)             | 16                          | 0.08    | 0.08      | 0.08      | 0.08       |
| Silver (Ag)               | 17                          | 0.01    | 0.67      | 0.06      | 3.80       |
| General Chemistry (mg/kg) | )                           |         |           |           |            |
| Chloride (Cl)             | 20                          | 64      | 8,035.09  | 2,225.00  | 70,100.00  |
| Fluoride (F)              | 13                          | 1.2     | 719.06    | 161.00    | 4,240.00   |
| Chromium, hex             | 15                          | 0.1     | 108.89    | 11.00     | 1,190.00   |
| Cyanide, Total (CN)       | 25                          | 0.8     | 692.47    | 114.50    | 3,920.00   |
| Cyanide, Am (CN)          | 11                          | 2.6     | 609.56    | 51.00     | 5,340.00   |
| Percent Solids            |                             | 13.5    | 37.65     | 30.80     | 94.10      |

 Table 7: F006 Analytical Data from the National Survey: Excludes non-detects and includes only values above method quantitation limit. 70 of 186 respondents submitted characterization data.

# **B.** Detailed Results of the Regional and National Benchmarking Studies

This section provides the detailed results of data gathering for the Regional and National Benchmarking Studies.

# 1. The Milwaukee Benchmarking Study

This section provides a detailed presentation of data gathered in the Milwaukee Benchmarking Study (MBS), including a characterization of plating processes, pollution prevention and recycling practices, F006 characteristics, and site specific variations in the generation and management of F006 for nine facilities in Milwaukee. Table 8 is the facility selection matrix used to select 10 facilities from 13 candidates. Table 9 presents information collected for each facility in the study. Table 10 summarizes the results of the laboratory analyses of F006 data and Table 11 presents detailed laboratory analysis results for each facility.

Six of the nine facilities reported waste generation rates. The total reported waste quantity for Milwaukee is approximately 590.5 tons/year. Four facilities reported landfilling their F006 waste while four facilities reported recycling their F006 wastes. One facility sent half of its F006 waste to landfills, and the other half to commercial recycling. Sixteen laboratory samples were gathered from nine facilities. Four of these samples were for organic chemicals.

|                                                                                                                                                                                                                                                                                                                                                                                        | Table 8: Milwaukee Metal Finishing Facility Selection Matrix |                      |                       |                          |                                   |                |                          |                     |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|-----------------------|--------------------------|-----------------------------------|----------------|--------------------------|---------------------|-------------------------------|
| Selection Criteria                                                                                                                                                                                                                                                                                                                                                                     | Fac 1*<br>(Selected)                                         | Fac 2*<br>(Selected) | Fac 3*<br>(Alternate) | Fac 4<br>(Selected)      | Fac 5<br>(Selected)               | Fac 6          | Fac 7                    | Fac 8<br>(Selected) | Fac 9<br>(Selected)           |
| Type: Captive/Job                                                                                                                                                                                                                                                                                                                                                                      | Job                                                          | Job                  | Job                   | Captive                  | Job                               | Captive        | Job                      | Job                 | Job                           |
| Size                                                                                                                                                                                                                                                                                                                                                                                   | 16                                                           | 152                  | 95                    | 2000/20                  | 50                                | 900/30         | 160                      | 35                  | 180                           |
| Main Treatment Technology                                                                                                                                                                                                                                                                                                                                                              | Alk/ PPT                                                     | Other - Al<br>reuse  | Alk/ PPT              | Alk/ PPT                 | Alk/ PPT<br>Off IX                | Alk/ PPT       | Alk/ PPT                 | Alk/ PPT            | Alk/ PPT                      |
| Treatment Technology                                                                                                                                                                                                                                                                                                                                                                   | CFR                                                          | CFR EMR              | CFR                   | CFR<br>Vacuum &<br>Evp.  | CFR                               | CFR            | CFR                      | Other               | Other CFR<br>IX               |
| Onsite Recycle                                                                                                                                                                                                                                                                                                                                                                         | No                                                           | No                   | No                    | 25%                      | No                                | No             | 60%                      | No                  | 95%                           |
| Landfill                                                                                                                                                                                                                                                                                                                                                                               | 100%                                                         | No                   | 100%                  | Yes                      | Yes                               | 5%             | 40%                      | 100%                | 5%                            |
| Main Mgmt. Method                                                                                                                                                                                                                                                                                                                                                                      | LF                                                           | Recycle              | LF                    | LF                       | LF                                | 95% Rec        | Recycle                  | LF                  | Recycle                       |
| Finishing Processes                                                                                                                                                                                                                                                                                                                                                                    | Zn/Fe                                                        | Cu                   | Zn/Fe                 | Zn/Fe<br>HCr/Al<br>Ni/Cr | HCr<br>Cu/Ni/Cr<br>Ni/Cr<br>Zn/Fe | Zn/Fe<br>Zn/Br | Zn/Fe<br>Cu/Ni/Cr/F<br>e | HCr & EN            | Zn/Fe NiCr<br>Cu/Ni/Cr<br>HCr |
| * Eliminated because they do not generate F006.EDElectrodialysisKey:ROReverse osmosisAlk/PPTAlkaline precipitationZn/FeZinc electroplate on steelIXIon exchangesNi/CrNickel chromium Electroplate on steelUltraUltrafiltration/MicrofiltrationCu/Ni/CrCopper nickel chromium on nonferrousCFRCounterflow rinseCuCopper/PC bandsEMRElectrolytic metal recoveryHCrHard chromium on steel |                                                              |                      |                       |                          |                                   |                |                          |                     |                               |

| Milwaukee Metal Finishing Facility Selection Matrix (cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                       |                    |                      |                      |                               |                      |                           |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|--------------------|----------------------|----------------------|-------------------------------|----------------------|---------------------------|---------|
| Selection Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fac 10*<br>(Alternate) | Fac 11<br>(Alternate) | Fac 12             | Fac 13<br>(Selected) | Fac 14<br>(Selected) | Fac 15                        | Fac 16<br>(Selected) | Fac 17<br>(Selected)      | Fac 18  |
| Type: Captive/Job                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Job                    | Job                   | Job                | Job                  | Job                  | Captive                       | Captive              | Captive                   | Job     |
| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                     | 50-60                 | 15                 | 70                   | 110                  | 700/14                        | 500/90               | 1550/37                   | 35      |
| Main Treatment Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alk/PPT                | Alk/PPT               | Offsite other      | Offsite<br>other     | Alk/PPT              | Alk/PPT<br>offsite            | Alk/PPT              | Alk/PPT                   | Alk/PPT |
| Treatment Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CFR other              | CFR Evap              | CFR<br>IX<br>other | CFR<br>IX<br>other   | CFR other            | CFR EMR<br>Ultra              | IX CFR               | CFR RO<br>IX EMR<br>Other | CFR IX  |
| Onsite Recycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No                     | Yes                   | Yes                | Yes                  | 95%                  | Yes                           | No                   | Yes                       | 20%     |
| Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                    | No                    | No                 | No                   | 5%                   | Yes                           | Yes                  | Yes                       | 20%     |
| Main Mgmt. Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LF                     | Recycle               | Recycle            | Recycle              | Recycle              | LF                            | LF                   | LF                        | 80% Rec |
| Finishing Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zn/Fe                  | Cu Ni Cr Zn<br>Sn Ag  | Ni/Cr              | Ni/Cr                | Zn/Fe                | Dupl Ni<br>Brite Ni<br>Hex Cr | Ni/Cr /Br            | Zn/Fe                     | HCr Ni  |
| * Eliminated because they do not generate F006.       ED       Electrodialysis         Key:       RO       Reverse osmosis         Alk/PPT       Alkaline precipitation       Zn/Fe       Zinc electroplate on steel         IX       Ion exchanges       Ni/Cr       Nickel chromium Electroplate on steel         Ultra       Ultrafiltration/Microfiltration       Cu/Ni/Cr       Copper nickel chromium on nonferrous         CFR       Counterflow rinse       Cu       Copper/PC bands         EMR       Electrolytic metal recovery       HCr       Hard chromium on steel |                        |                       |                    |                      |                      |                               |                      |                           |         |

| Table 9: Facility-Specific Information for Milwaukee Facilities<br>Facility F4                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                      | Sample Descrip                                                                                                                                                                                                                                                                                                      | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Nickel-chrome on Aluminum<br>Zinc (non-CN) on Steel146 tons/yrF1-01 - Sludge sample collected<br>directly from drop bin<br>F1-02 - Sludge collected from<br>                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                   | Sample Charact                                                                                                                                                                                                                                                                                                      | teristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| <ul> <li>Cr on decorative Cr line is the seal with non-chrome sealer lating technologies</li> <li>blating solutions</li> <li>bbers on of chrome line stitution - replaced hard chrome with</li> <li>1 plating line</li> <li>equality of final rinses ute plating bath solution ks exiting soak cleaner rs is and Hex. Cr lines</li> <li>d housekeeping</li> </ul> | F1 - 01Total (mg/kg)Al - 31,200Sb - 5.5As - 9.9Ba - 41.9Be - NDBi - 2.7Cd - 7.5Ca - 24,800Cr - 59,500Hex. Cr - 0.6Cu - 130Fe - 25,000Pb - 297Mg - 15,800Mn - 1,710Hg - 2Ni - 19,900Se - 16.6Ag - 267Na - 8,360Sn - 404Zn - 336,000CN - NDTCLP (mg/l)As - NDBa - 0.3Cd - 0.04Cr - 40.6Pb - NDHg - NDSe - NDAg - 0.05 | F1 - 02<br>Total (mg/kg)<br>Al - 17,300<br>Sb - 1.8<br>As - 9.3<br>Ba - 34.3<br>Be - ND<br>Bi - 3.3<br>Cd - 9.6<br>Ca - 17,500<br>Cr - 64,900<br>Hex. Cr - 0.6<br>Cu - 1,480<br>Fe - 27,700<br>Pb - 366<br>Mg - 17,400<br>Mn - 399<br>Hg - ND<br>Ni - 18,200<br>Se - 16<br>Ag - 97.9<br>Na - 21,700<br>Sn - 582<br>Zn - 335,000<br>CN - ND<br>TCLP (mg/l)<br>As - ND<br>Ba - 1.4<br>Cd - 0.1<br>Cr - 56.2<br>Pb - 0.1<br>Hg - ND<br>Se - ND<br>Ag - ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                   | Facility F4         F006 Quantity and Management         146 tons/yr                                                                                                                                                                                                                                                | Facility F4F006 Quantity and ManagementSample Descrip146 tons/yr $E1-01$ - Sludge s<br>directly from dro<br>$E1-02$ - Sludge c<br>supersack dated itLandfillE1-01mc baths to eliminate partial bath<br>is<br>to cr on decorative Cr line<br>is<br>tate seal with non-chrome sealer<br>ating technologiesF1 - 01<br>Total (mg/kg)<br>A1 - 31,200<br>Be - ND<br>Bi - 2.7<br>Cd - 7.5<br>Cd - 7.5<br> |  |  |  |  |  |  |

| Table 9 (cont'd): Facility-Specific Information for Milwaukee Facilities         Facility F5                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                 | F006 Quantity and Management        | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Zinc (non-CN) on steel<br>Cu/Ni/Cr on steel<br>Nickel chrome on steel<br>Nickel plating<br>Hard chrome on steel | 42.5 tons/yr<br>Recycle (Horsehead) | <u>F5-01</u> - Collected from sludge drier<br><u>F5-02</u> - Collected from rolloff bin<br>accumulated $\sim$ 1 month previously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Pollution Prevention Practices                                                                                  |                                     | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Nickel plating<br>Hard chrome on steel                                                                          |                                     | F5 - 01         Total (mg/kg)         Al - 3,690         Sb - 67.4         As - 15.4         Ba - 843         Be - 0.6         Bi - 2.1         Cd - 9.6         Ca - 21,400         Cr - 92,000         Hex. Cr - 0.6         Cu - 39,900         Fe - 92,100         Pb - 976         Mg - 13,000         Mn - 1,200         Hg - 0.3         Ni - 104,000         Se - 10.6         Ag - 8.7         Na - 5,950         Sn - 429         Zn - 126,000         CN - 700         TCLP (mg/l)         Ar - ND         Ba - 1.7         Cd - 0.05         Cr - 27.2         Pb - ND         Hg - ND         Se - ND | F5 - 02         Total (mg/kg)         Al - 1,710         Sb - 45         As - 18.3         Ba - 157         Be - 0.7         Bi - 3.2         Cd - 13.4         Ca - 23,200         Cr - 71,000         Hex. Cr - 0.1         Cu - 41,500         Fe - 105,000         Pb - 556         Mg - 12,500         Mn - 1,340         Hg - 0.26         Ni - 105,000         Se - 11.5         Ag - 3.4         Na - 6,830         Sn - 337         Zn - 158,000         CN - 900         TCLP (mg/l)         As - ND         Ba - 2.2         Cd - 0.1         Cr - 12.1         Pb - ND         Hg - ND         Se - ND |  |  |

| Table 9 (cont'd): Facility-Specific Information for Milwaukee Facilities<br>Facility F8 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                         | F006 Quantity and Management | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Hard Chrome on Steel                                                                    | unreported<br>Landfill       | $\overline{F8-01}$ - Collected from supersack<br>dated that week<br>$\overline{F8-02}$ - Collected from supersack<br>dated the previous month                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Pollution Prevention Practices                                                          |                              | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                         |                              | F8-01         Total (mg/kg)         Al - 19,300         Sb - 161         As - 5.5         Ba - 83.4         Be - ND         Bi - ND         Cd - 10.1         Ca - 67,400         Cr - 193,000         Hex. Cr - 0.4         Cu - 24,500         Fe - 110,000         Pb - 858         Mg - 9,710         Mn - 1,360         Hg - ND         Ni - 1,130         Se - ND         Ag - ND         Na - 19,600         Sn - 129         Zn - 3,790         CN - ND         TCLP (mg/l)         As - ND         Ba - 0.3         Cd - 0.01         Cr - 54.1         Pb - 0.1         Hg - N D         Se - ND         Ag - ND | F8-02         Total (mg/kg)         Al - 8,560         Sb - 110         As - 11.8         Ba - 33.3         Be - ND         Bi - ND         Cd - 42.7         Ca - 50,800         Cr - 91,500         Hex. Cr - 0.2         Cu - 41,100         Fe - 279,000         Pb - 231         Mg - 11,100         Mn - 1,080         Hg - 1.2         Ni - 744         Se - ND         Ag - ND         Na - 49,400         Sn - 96.3         Zn - 9,610         CN - ND         TCLP (mg/l)         As - ND         Ba - 0.7         Cd - 0.3         Cr - 12.8         Pb - ND         Hg - 0.005         Se - ND         Ag - ND |  |  |

| Table 9 (cont'd):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 9 (cont'd): Facility-Specific Information for Milwaukee Facilities<br>Facility F9                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                                                                                | Sample Descript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Chrome on aluminum<br>Bright dip on brass<br>Copper, nickel, chrome on steel<br>Hard chrome on steel<br>Nickel chrome on nonferrous<br>Zinc (non-CN) on steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150 tons/yr<br>Recycle (Encycle/Horsehead 97%)<br>Landfill (3%)                                                                                                                                                                                                                                                                                                                                                             | <u>F9-01</u> - Collected<br>loaded that day<br><u>F9-02</u> - Collected<br>weeks later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l from supersack<br>l by facility about 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| SPENT PLATING SOLUTIONEliminated cadmium plating lineReplace some hexavalent chrome linesUtilizes filtration carbon treatment, repdummying for general bath life extensiUses precipitation, monitoring, carbonspent solutionsUses evaporative techniques on nickelChemical usage reduction through autorIncreased temperature of bathDRAG OUT REDUCTION/RECOVEDrag out and counter-current flow rinsIon exchange systemsEvaporation and Mesh pad mist eliminSpray rinsing and drag-out tankageEnhanced product hang timesWithdrawal and drainage timeUses wetting agents and drainage boarSpray rinses only on nickel boardsUtilizes strategic workpiece positioninRINSEWATERImplemented a strict control program fseparate production lineCompany-wide water conservation progrestrictors water meters, etc.)Use spent acid bath for pH adjustmentReuse treated wastewater in productionReplaced solvent-based washers with ageneration)Flow restrictorsOTHERUse sludge dryer to reduce sludge volutReduced cyanide use by 80%Conduct annual training for waste treathow this affects sludge volumesTooling attention/maintenanceChemical inventory and controlWaste collection plumbing alterationsDikingIncorporated energy savings techniqueConducts annual plant assessments andUses preventive maintenance systems | elenishment, and electrolytic<br>on<br>ate agitation, and electrowinning on<br>plating bath<br>omation and substitution<br>ERY<br>e systems<br>ators for drag-out recovery<br>ds<br>g<br>for monitoring incoming water to each<br>ogram (e.g., spray rinses, flow<br>in WWT<br>n lines<br>aqueous systems (increasing sludge<br>ume and transportation costs<br>tment operators on chemical use and<br>or improvements<br>s | F9-01         Total (mg/kg)         Al - 27,000         Sb - 5.4         As - 4.8         Ba - 298         Be - ND         Bi - 72.5         Cd - 2.1         Ca - 87,000         Cr - 28,200         Hex. Cr - 29         Cu - 20,700         Fe - 105,000         Pb - 439         Mg - 44,300         Mn - 1,070         Hg - 0.35         Ni - 14,800         Se - 1.9         Ag - 65         Na - 15,900         Sn - 1,100         Zn - 67,200         CN - 46         TCLP (mg/l)         As - ND         Ba - 1.1         Cd - ND         Cr - 0.9         Pb - ND         Hg - ND         Se - ND         Ag - ND | F9-02         Total (mg/kg)         Al - 13,200         Sb - 13.5         As - 3.1         Ba - 257         Be - ND         Bi - 31.5         Cd - 17.3         Ca - 70,000         Cr - 94,000         Hex. Cr - 1,000         Cu - 15,000         Fe - 80,800         Pb - 410         Mg - 30,300         Mn - 1,170         Hg - 0.6         Ni - 18,700         Se - ND         Ag - 230         Na - 39,000         Sn - 681         Zn - 83,900         CN - 74         TCLP (mg/l)         As - ND         Ba - 0.8         Cd - ND         Cr - 13.1         Pb - ND         Hg - ND         Se - 0.04         Ag - ND |  |  |  |  |  |  |  |

| Table 9 (cont'd):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 9 (cont'd): Facility-Specific Information for Milwaukee Facilities<br>Facility F11                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F006 Quantity and Management                                                                                                                                                                                            | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Zinc (non-CN) on steelunreportedF11-01 - CollectedTin on non-ferrous and steelRecycle (Encycle)F11-02 - CollectedNickel-chrome platingRecycle (Encycle)dated the previous receivedCopper-nickel on steelSteelSteel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Charact                                                                                                                                                                                                          | teristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| SPENT PLATING SOLUTIONEliminated cyanide cadmium platingReplaced zinc cyanide plating with zinSpent alkaline baths are used for pH acOil removal techniquesChemical usage reduction through subUtilizes filtration, carbon treatment, redummyingDRAG OUT REDUCTION/RECOVEDrag out recovery on chrome and nickEnhanced product hang timesInstalled atmospheric evaporators on arecoveryWetting agents and drainage boardsStrategic workpiece positioningIncrease in withdrawal and drainage timesMonitors solutions and uses purer anorUtilizes exit spray rinseUses atmospheric and simple evaporateFlow restrictorsConductivity controlsOTHERInstalled sludge drier to reduce sludgeTrain staff on causes of increase in hazTooling attention/maintenanceChemical inventory and controlWaste collection alterations or improveDikingProduct longevity through specificationEnergy saving techniquesPlant housekeeping and annual plant aAutomatic leak detection system | Ijustment<br>stitution<br>plenishment, and electrolytic<br>ERY<br>el lines<br>utomatic chrome line for drag out<br>me<br>des and bags<br>ion techniques<br>volume<br>tardous waste production<br>ements<br>n alteration | F11 - 01<br>Total (mg/kg)<br>Al - 1,800<br>Sb - 14.2<br>As - 13<br>Ba - 227<br>Be - ND<br>Bi - 1.7<br>Cd - 12.5<br>Ca - 16,100<br>Cr - 31,100<br>Hex. Cr - 26<br>Cu - 8,980<br>Fe - 58,800<br>Pb - 527<br>Mg - 13,500<br>Mn - 557<br>Hg - ND<br>Ni - 180,000<br>Se - 7.3<br>Ag - 163<br>Na - 22,700<br>Sn - 3,550<br>Zn - 129,000<br>CN - 16<br>TCLP (mg/l)<br>As - ND<br>Ba -1.3<br>Cd - 0.1<br>Cr - 3.1<br>Pb - ND<br>Hg - ND<br>Se - ND<br>Hg - ND | F11-02<br>Total (mg/kg)<br>Al - 1,650<br>Sb - 11.1<br>As - 6.5<br>Ba - 159<br>Be - ND<br>Bi - 1.8<br>Cd - 7.3<br>Ca - 14,800<br>Cr - 48,100<br>Hex. Cr - 0.4<br>Cu - 11,300<br>Fe - 69,300<br>Pb - 230<br>Mg - 13,700<br>Mn - 707<br>Hg - 0.3<br>Ni - 84,600<br>Se - 5<br>Ag - 657<br>Na - 84,300<br>Sn - 8,070<br>Zn - 94,400<br>CN - 6.6<br>TCLP (mg/l)<br>As - ND<br>Ba - 0.11<br>Cd - 0.64<br>Cr - ND<br>Pb - ND<br>Hg - ND<br>Se - ND<br>Ag - 0.08 |  |  |  |  |  |  |  |

| Table 9 (cont'd):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Facility-Specific Information for Mil<br>Facility F13                                                                                                                                                                                                                                                                                                                                                                                                                                              | lwaukee Facilities                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |
| Nickel chrome on steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>F13-01</u> - did not meet the regulatory<br>definition of F006<br><u>F13-02</u> - Collected from sludge<br>supersack                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                  |
| SPENT PLATING SOLUTIONOil removal and filtration techniquesPromote product longevity through speUses alternate stripping methodologiescyanide strippingEvaporation to concentrate plating by-JSubstituted hexavalent chrome with triSet up pilot line to evaluate a liquid addRequire operators to log plating paramedcontrolUses purer anodes and bags and fume andDRAG OUT REDUCTION/RECOVEEnhanced product hang timesWetting agentsAir knivesSpray or fog rinsesDrainage boardsIncreased withdrawal and drainage timStrategic workpiece positioningRINSEWATEROther than cooling water and water usezero discharge facility (from the processRinse water is recycled through filtrationtreatment section, replenishment and icCounter-current flow rinse systemsUtilizes electrocoagulation for cleaningFlow restrictorsReverse osmosis utilized on incoming ofOTHERTooling attention/maintenance, preventImproved record keeping demonstratesimprovementInstalled filter press and sludge drier toChemical inventory and controlWaste collection plumbing alterations ofDikingHigh efficiency lightingConducts annual plant assessments and | <ul> <li>- switched from cyanide to non-<br/>oroducts<br/>valent chrome<br/>lition agent for cleaning<br/>eters daily which improves their</li> <li>suppressors</li> <li>RY</li> <li>e</li> <li>d to process incoming water, this is a<br/>s units)</li> <li>on, carbon absorption in waste<br/>in exchange</li> <li>a (and reusing) rinse waters</li> <li>water</li> <li>ive maintenance systems<br/>areas to be considered for</li> <li>reduce sludge volume</li> <li>or improvements</li> </ul> | F13-02<br>Total (mg/kg)<br>Al - 311<br>Sb - 0.6<br>As - 2.3<br>Ba - 6<br>Be - ND<br>Bi - ND<br>Cd - ND<br>Ca - 855<br>Cr - 193<br>Hex. Cr - 0.5<br>Cu - 33.6<br>Fe - 3,350<br>Pb - 0.6<br>Mg - 355<br>Mn - 3.8<br>Hg - ND<br>Ni - 76,000<br>Se - ND<br>Ag - ND<br>Na - 16,400<br>Sn - 9.0<br>Zn - 6.1<br>CN - 2.0 |

| Table 9 (cont'd):                                                                                                                                                                                                                                                   | Table 9 (cont'd): Facility-Specific Information for Milwaukee Facilities<br>Facility F14                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                     | F006 Quantity and Management                                                                                                                                                     | Sample Descript                                                                                                                                                                                                                                                                                                                    | ion                                                                                                            |  |  |  |  |  |
| Zinc (CN) on Steel                                                                                                                                                                                                                                                  | 196 tons/yr                                                                                                                                                                      | F14-01 - Sludge from drier output                                                                                                                                                                                                                                                                                                  |                                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                     | Recycle (Horsehead 58%)<br>Landfill (42%)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |  |  |  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                      |                                                                                                                                                                                  | Sample Charact                                                                                                                                                                                                                                                                                                                     | eristics (Dry wt.)                                                                                             |  |  |  |  |  |
| SPENT PLATING SOLUTIONS<br>Separated the process chemistry and w<br>Cyanide bath carbonate freezing to pro<br>Utilize bags on 1 chloride bath<br>Oil removal techniques on 1 barrelDRAG-OUT REDUCTION<br>Workpiece positioning<br>Increase dwell (rinse) cycles<br> | ne<br>ater pH adjustment<br>to eliminate major changes in flow<br>ng company to assist in water control<br>dmium, nickel, hard chrome, tin,<br>m anodizing<br>as by end of 1997. | F14 - 01<br>Total (mg/kg)<br>Al -2,320<br>Sb - 2<br>As - 13.4<br>Ba -29.2<br>Be - ND<br>Bi -ND<br>Cd - 3.9<br>Ca -18,000<br>Cr -26,900<br>Hex. Cr - 2.6<br>Cu - 54.6<br>Fe - 194,000<br>Pb - 64.8<br>Mg - 9,990<br>Mn - 979<br>Hg - ND<br>Ni - 57.1<br>Se - 5.7<br>Ag - 4.4<br>Na - 3,830<br>Sn - 19.5<br>Zn - 277,000<br>CN - 200 | <u>TCLP</u> (mg/l)<br>As - ND<br>Ba - 1.3<br>Cd - 0.03<br>Cr - 0.2<br>Pb - ND<br>Hg - ND<br>Se - ND<br>Ag - ND |  |  |  |  |  |

| Table 9 (cont'd): Facility-Specific Information for Milwaukee Facilities<br>Facility F16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F006 Quantity and Management                                                                                                                                                          | Sample Descript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Nickel chrome on non-ferrous<br>Gold plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41 tons/yr<br>Landfill                                                                                                                                                                | <u>F16-01</u> - Collected from supersack<br>dated that day<br><u>F16-02</u> - Collected by facility about<br>2 weeks later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       | Sample Characte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| SPENT PLATING SOLUTION         Filtration         Improved SOPs by tracking water flow         hot rinse >90%         Leak detection systems on plating bath         Metals recovery system via ion exchan         waters         Oil removal techniques on pre-cleaning         DRAG OUT REDUCTION/RECOVE         Conductivity meters         Rack design eliminates drag out         Enhanced product hang times on pre-c         Wetting agents on chrome line         Spray rinses and drainage boards         RINSEWATER         Counter-current flow rinsing on plating         Flow restrictors         Spray rinsing on some pre-cleaning lin         Replaced solvent-based washers with a         generation)         Continually searching for new environt         OTHER         Operators are certified and receive on-         Tooling attention/maintenance         Chemical inventory and control         Diking         Utilize high efficiency motors         Conduct annual plan assessments         Ongoing plant housekeeping and chem         Preventive maintenance systems         Employ monitoring and utilize bags | ge reclaims Cr and Ni from rinse<br>g line<br>ERY<br>leaning line<br>g and pre-cleaning lines<br>es<br>aqueous systems (increasing sludge<br>mentally safe cleaners<br>going training | Simple completed and the completed and t | F16-02 $Total (mg/kg)$ Al - 1,210         Sb - 2.7         As - 7         Ba - 24.5         Be - ND         Bi - 2.2         Cd - 1.3         Ca - 105,000         Cr - 5,520         Hex. Cr - 0.1         Cu - 5,520         Fe - 189,000         Pb - 778         Mg - 4,250         Mn - 950         Hg - ND         Ni - ND         Se - 16,800         Ag - 20.2         Na - 7,900         Sn - 50.8         Zn - 5,790         CN - ND         TCLP (mg/l)         As - ND         Ba - 0.2         Cd - ND         Cr - 12.7         Pb - 1.3         Hg - 0.01         Se - ND |  |  |  |  |

| Table 9 (cont'd):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 9 (cont'd): Facility-Specific Information for Milwaukee Facilities<br>Facility F17                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F006 Quantity and Management                                                                                                                                                                                                                                                                                                           | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Zn (non-CN) on steel<br>Chrome on nonferrous<br>Copper-nickel on nonferrous<br>Copper-nickel on steel<br>Cadmium on steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unreported<br>Landfill                                                                                                                                                                                                                                                                                                                 | <u>F17-01</u> - Collected from sludge drie<br><u>F17-02</u> - Collected from supersack<br>dated the previous month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                        | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | teristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| SPENT PLATING SOLUTIONUses vapor recompression evaporationrecoveryEmploys filtration, carbon treatment, redummyingUtilizes cyanide bath carbonate freezinReduced 50% of cadmium to zincOil removal techniques on pre-cleanin,Alternate stripping methodologies - forbut now outsourcedDRAG OUT REDUCTION/RECOVEUses stagnant rinse tanks or drag out taDrag out waters replace drag in watersSpray rinses and dikingEnhanced product hang timesUtilizes wetting agents and drainage bailIncreased temperature bath, withdrawaRINSEWATERSegregate wastewater streamsCounter-current flow rinse systemsFlow restrictorsConductivity metersUses reverse osmosis (3 units) and atmentevaporation to recycle rinse watersIon exchange for water delivered to plateOTHERPlanning to re-engineer the WWT to see cadmium sludge to enable recycling ofCadmium sludge will be landfilled.Chemical inventory and controlRedesigned waste plumbingUtilizes energy saving techniquesConducts annual plant assessments andPreventive maintenance systems and lateequipment | eplenishment, and electrolytic<br>ag to extend life of solution<br>g line<br>rmerly used cyanide based stripper;<br><u>ERY</u><br>anks<br>to r added back to plating bath<br>oards<br>al and drainage time<br>hospheric and vacuum distillation<br>ating baths<br>egregate the nickel sludge from the<br>the nickel sludge to Encycle. | F17-01 $Total$ (mg/kg)         Al - 1,260         Sb - 0.6         As - 3.8         Ba - 29.4         Be - ND         Bi - ND         Cd - 39,300         Ca - 141,000         Cr - 14,000         Hex. Cr - 19         Cu - 21,900         Fe - 24,300         Pb - 221         Mg - 12,900         Mn - 244         Hg - ND         Ni - 83,000         Se - 2.1         Ag - 0.5         Na - 11,700         Sn - 11.2         Zn - 35,500         CN - 380 $TCLP$ (mg/l)         As - ND         Ba - 1.3         Cd - 13.3         Cr - ND         Pb - ND         Hg - ND         Se - 0.01         Ag - ND | F17-02 $Total$ (mg/kg)         Al - 1,360         Sb - 0.6         As - 4.1         Ba - 43.5         Be - ND         Bi - ND         Cd - 21,600         Ca - 140,000         Cr - 9,250         Hex. Cr - 3.7         Cu - 18,600         Fe - 17,400         Pb - 237         Mg - 12,300         Mn - 199         Hg - 0.12         Ni - 35,100         Se - 2.1         Ag - 1.5         Na - 17,700         Sn - 13.8         Zn - 44,600         CN - 99         TCLP (mg/l)         As - ND         Ba - 1.1         Cd - 5.7         Cr - ND         Pb - ND         Hg - ND         Se - ND         Ag - ND |  |  |  |  |  |  |

 Table 10: Overview of Milwaukee F006 Analytical Data: # of Samples Which Were: Not-Detected; "C" values

 (i.e., Statistically Estimated Values Above Instrument Detection Limit, but Below Method Quantitation Limit); Above

 MethodQuantitation Limit

| Constituent              | # Samples  | # Non<br>Detects | # Samples<br>Above Instrument<br>Detection, Below | # Samples Above Method<br>Quantitation Limit |
|--------------------------|------------|------------------|---------------------------------------------------|----------------------------------------------|
|                          |            |                  | Method Quantitation                               |                                              |
| Total Metals Concentrati | on (mg/kg) |                  |                                                   |                                              |
| Aluminum                 | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Antimony                 | 16         | 0(0%)            | 6(37%)                                            | 10(63%)                                      |
| Arsenic                  | 16         | 0(0%)            | 2(12%)                                            | 14(88%)                                      |
| Barium                   | 16         | 0(0%)            | 3(19%)                                            | 13(81%)                                      |
| Beryllium                | 16         | 14(87%)          | 0(0%)                                             | 2(13%)                                       |
| Bismuth                  | 16         | 6(37%)           | 3(19%)                                            | 7(44%)                                       |
| Cadmium                  | 16         | 1(6%)            | 2(12%)                                            | 13(82%)                                      |
| Calcium                  | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Chromium                 | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Copper                   | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Iron                     | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Lead                     | 16         | 0(0%)            | 1(6%)                                             | 15(94%)                                      |
| Magnesium                | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Manganese                | 16         | 0(0%)            | 1(6%)                                             | 15(94%)                                      |
| Mercury                  | 16         | 6(37%)           | 4(25%)                                            | 6(37%)                                       |
| Nickel                   | 16         | 2(12%)           | 0(0%)                                             | 14(88%)                                      |
| Selenium                 | 16         | 2(12%)           | 0(0%)                                             | 12(75%)                                      |
| Silver                   | 16         | 3(37%)           | 1(6%)                                             | 12(75%)                                      |
| Sodium                   | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Tin                      | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Zinc                     | 16         | 0(0%)            | 1(6%)                                             | 15(94%)                                      |
| ГСLP (mg/l)              |            |                  |                                                   |                                              |
| Arsenic                  | 16         | 16(100%)         | 0(0%)                                             | 0(0%)                                        |
| Barium                   | 16         | 0(0%)            | 12(75%)                                           | 4(25%)                                       |
| Cadmium                  | 16         | 4(25%)           | 4(25%)                                            | 8(50%)                                       |
| Chromium                 | 16         | 2(12%)           | 0(0%)                                             | 14(88%)                                      |
| Lead                     | 16         | 12(75%)          | 0(0%)                                             | 4(25%)                                       |
| Mercury                  | 16         | 13(81%)          | 0(0%)                                             | 3(19%)                                       |
| Selenium                 | 16         | 14(87%)          | 1(6%)                                             | 1(6%)                                        |
| Silver                   | 16         | 12(75%)          | 3(19%)                                            | 1(6%)                                        |
| General Chemistry (mg/k  | xg)        |                  |                                                   |                                              |
| Chloride                 | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Fluoride                 | 16         | 0(0%)            | 1(6%)                                             | 15(94%)                                      |
| Chromium, hexavalent     | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |
| Total Cyanide            | 16         | 4(25%)           | 0(0%)                                             | 12(75%)                                      |
| Amenable Cyanide         | 16         | 4(25%)           | 0(0%)                                             | 12(75%)                                      |
| Percent Solids           | 16         | 0(0%)            | 0(0%)                                             | 16(100%)                                     |

| Table 11: Analytical Data for the Milwaukee Facilities. |                  |                    |             |         |        |  |  |  |  |  |  |  |
|---------------------------------------------------------|------------------|--------------------|-------------|---------|--------|--|--|--|--|--|--|--|
| Constituent                                             | CAS No.          | F1-01 <sup>1</sup> | F9-01       | F16-01  | F17-01 |  |  |  |  |  |  |  |
| Volatile Organics - Method 8260A µg/kg                  |                  |                    |             |         |        |  |  |  |  |  |  |  |
| Acetone                                                 | 67641            | 210                | В 7,500     | В 290   | 24     |  |  |  |  |  |  |  |
| 2-Butanone                                              | 78933            | J                  | B 58        | B 69    | J      |  |  |  |  |  |  |  |
| 2-Hexanone                                              | 591786           | ND                 | ND          | JB      | ND     |  |  |  |  |  |  |  |
| Benzene                                                 | 71432            | ND                 | 53          | J       | ND     |  |  |  |  |  |  |  |
| Chloroform                                              | 67663            | J                  | 6           | ND      | ND     |  |  |  |  |  |  |  |
| Chlorobenzene                                           | 108907           | ND                 | J           | ND      | ND     |  |  |  |  |  |  |  |
| Trichloroethene                                         | 79016            | ND                 | ND          | J       | ND     |  |  |  |  |  |  |  |
| 4-Methyl-2-pentanone                                    | 108101           | ND                 | 16          | 64      | ND     |  |  |  |  |  |  |  |
| Toluene                                                 | 108883           | J                  | J           | 20      | ND     |  |  |  |  |  |  |  |
| Ethylbenzene                                            | 100414           | ND                 | ND          | J       | ND     |  |  |  |  |  |  |  |
| m,p-Xylenes                                             | 108383 / 106423  | ND                 | ND          | J       | ND     |  |  |  |  |  |  |  |
| o-Xylene                                                | 95476            | ND                 | ND          | J       | ND     |  |  |  |  |  |  |  |
|                                                         | Semivolatile Org | anics - Method 8   | 8270B µg/kg |         |        |  |  |  |  |  |  |  |
| bis(2-Ethylhexyl)phthalate                              | 117817           | 59,000             | 55,000      | 180,000 | 28,000 |  |  |  |  |  |  |  |
| Di-n-octylphthalate                                     | 117840           | J                  | ND          | ND      | ND     |  |  |  |  |  |  |  |
| Fluoranthene                                            | 206440           | 4,900              | ND          | ND      | ND     |  |  |  |  |  |  |  |
| Phenanthrene                                            | 85018            | 4,600              | ND          | ND      | ND     |  |  |  |  |  |  |  |
| Pyrene                                                  | 129000           | J                  | ND          | ND      | ND     |  |  |  |  |  |  |  |
| Phenol                                                  | 108952           | 3,600              | 3,600       | ND      | ND     |  |  |  |  |  |  |  |
| Benzyl alcohol                                          | 100516           | 7,900              | 7,900       | ND      | ND     |  |  |  |  |  |  |  |

Notes: All results reported on a dry-weight basis.

1. Facility F4's F006 samples were designated as F1.

J Mass spectral data indicate the presence of a compound that meets the identification criteria for which the result is less than the laboratory detection limit, but greater than zero.

B Analyte also detected in the associated method blank analysis.

ND Non-detect

Volatiles analyzed for but not detected include: Chloromethane, Vinyl Chloride, Bromomethane, Chloroethane, Trichlorofluoromethane, 2-Chloroethyl vinyl ether, 1,1-Dichloroethene, Methylene Chloride, Carbon Disulfide, Vinyl Acetate, 1,1-Dichloroethane, trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, 1,1,1-Trichloroethane, Carbon Tetrachloride, 1,2-Dichloroethane, Benzene, 1,2-Dichloropropane, Bromodichloromethane, cis-1,3-Dichloropropene, trans-1,3-Dichloropropene, 1,1,2-Trichloroethane, Dibromochloromethane, Tetrachloroethene (PCE), Styrene, Bromoform, 1,1,2,2-Tetrachloroethane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, and 1,2-Dichlorobenzene. Semivolatiles analyzed for but not detected include: bis(2-Chloroethyl)ether, 2-Chlorophenol, 2,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,2-Dichlorobenzene, 2-Methylphanol, bis((2-Chloroisopropyl)ether, 4-Methyphenol, N-Nitroso-di-n-propylamine, Hexachloroethane, Nitrobenzene, Isophorone, 2-Nitrophenol, 2,4-Dimethylphenol, bis(2-Chloroethoxy)methane, Benzoic acid, 2,4-Dichlorophenol, 1,2,4-Trichlorobenzene, Naphthalene, 4-Chloroaniline, Hexachlorobutadiene, 4-Chloro-3-methylphenol, 2-Methylnaphthalene, Hexachlorocyclopentadiene, 2,4,6-Trichlorophenol, 2,4,5-Trichlorophenol, 2-Chloronaphthalene, 2-Nitroaniline, Dimethylphthalate, Acenaphthylene, 2,6-Dinitrotoluene, 3-Nitroaniline, Acenaphthene, 2,4-Dinitrophenol, 4-Nitrophanol, 4-Nitrophenol, Dibenzofuran, 2,4-Dinitrotoluene, Diethyphthalate, 4-Chlorophenyl-phenylether, Fluorene, 4-Nitroaniline, 4,6-Dinitro-2methylphenol, N-Nitrosodiphenylamine, 4-Bromophenyl-phenylether, Hexachlorobenzene, Pentachloropheno,l Anthraoene, Carbazole, Di-n-butylphthalate, Butylbenzylphthalate, 3,3'-Dichlorobenzidine, Benzo(a)anthracene, Chrysene, Din-octylphthalate, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,f)perylene

|             |                                         | Ta                 | able 11 (cont'd) | : Analytical Dat   | a for the Milwa | ukee Facilities. |         |         |         |  |
|-------------|-----------------------------------------|--------------------|------------------|--------------------|-----------------|------------------|---------|---------|---------|--|
| Constituent | CAS No.                                 | F1-01 <sup>1</sup> | F1-02            | F5-01              | F5-02           | F16-01           | F16-02  | F8-01   | F8-02   |  |
|             | Total Metals - Methods 6020, 7471 mg/kg |                    |                  |                    |                 |                  |         |         |         |  |
| Aluminum    | 7429905                                 | 31,200             | 17,300           | 3,690              | 1,710           | 3,940            | 1,210   | 19,300  | 8,560   |  |
| Antimony    | 7440360                                 | C 5.5              | C 1.8            | 67.4               | 45.0            | C 3.5            | C 2.7   | 161     | 110     |  |
| Arsenic     | 7440382                                 | C 9.9              | C 9.3            | 15.4               | 18.3            | 9.4              | 7.0     | C 5.5   | 11.8    |  |
| Barium      | 7440393                                 | C 41.9             | C 34.3           | 843                | 157             | 73.7             | C 24.5  | 83.4    | C 33.3  |  |
| Beryllium   | 7440417                                 | ND                 | ND               | C 0.59             | C 0.69          | ND               | ND      | ND      | ND      |  |
| Bismuth     | 7440699                                 | C 2.7              | C 3.3            | C 2.1              | 3.2             | 5.4              | C 2.2   | ND      | ND      |  |
| Cadmium     | 7440439                                 | 7.5                | 9.6              | 9.6                | 13.4            | C 1.3            | C 1.3   | 10.1    | 42.7    |  |
| Calcium     | 7440702                                 | 24,800             | 17,500           | 21,400             | 23,200          | 97,300           | 105,000 | 67,400  | 50,800  |  |
| Chromium    | 7440473                                 | 59,500             | 64,900           | 92,000             | 71,000          | 13,800           | 5,520   | 193,000 | 91,500  |  |
| Copper      | 7440508                                 | 130                | 1,480            | 39,900             | 41,500          | 13,600           | 5,320   | 24,500  | 41,100  |  |
| Iron        | 7439896                                 | 25,000             | 27,700           | 92,100             | 105,000         | 114,000          | 189,000 | 110,000 | 279,000 |  |
| Lead        | 7439921                                 | 297                | 366              | 976                | 556             | 2,870            | 778     | 858     | 231     |  |
| Magnesium   | 7439954                                 | 15,800             | 17,400           | 13,000             | 12,500          | 10,400           | 4,250   | 9,710   | 11,100  |  |
| Manganese   | 7439965                                 | 1,710              | 399              | 1,200              | 1,340           | 671              | 950     | 1,360   | 1,080   |  |
| Mercury     | 7439976                                 | 2.0                | ND               | C 0.33             | C 0.26          | C 0.40           | ND      | ND      | C 1.2   |  |
| Nickel      | 7440020                                 | 19,900             | 18,200           | 104,000            | 105,000         | ND               | ND      | 1,130   | 744     |  |
| Selenium    | 7782492                                 | 16.6               | 16.0             | 10.6               | 11.3            | 30,700           | 16,800  | ND      | ND      |  |
| Silver      | 7440224                                 | 267                | 97.9             | 8.7                | 3.4             | 47.4             | 20.2    | ND      | ND      |  |
| Sodium      | 7440235                                 | 8,360              | 21,700           | 5,950              | 6,830           | 5,490            | 7,900   | 19,600  | 49,400  |  |
| Tin         | 7440315                                 | 404                | 582              | 429                | 337             | 497              | 50.8    | 129     | 96.3    |  |
| Zinc        | 7440666                                 | 336,000            | 335,000          | 126,000            | 158,000         | 14,200           | 5,790   | 3,790   | 9,610   |  |
|             |                                         |                    | TCLP Me          | etals - Methods 13 | 311, 6010, 7470 | mg/L             |         |         |         |  |
| Arsenic     | 7440382                                 | ND                 | ND               | ND                 | ND              | ND               | ND      | ND      | ND      |  |
| Barium      | 7440393                                 | C 0.26             | 1.4              | C 1.7              | 2.2             | C 0.9            | C 0.2   | C 0.3   | B 0.7   |  |
| Cadmium     | 7440439                                 | C 0.04             | 0.07             | C 0.05             | 0.08            | C 0.03           | ND      | C 0.01  | 0.3     |  |
| Chromium    | 7440473                                 | 40.6               | 56.2             | 27.2               | 12.1            | 14.5             | 12.7    | 54.1    | 12.8    |  |
| Lead        | 7439921                                 | ND                 | 0.11             | ND                 | ND              | 0.3              | 1.3     | 0.1     | ND      |  |
| Mercury     | 7439976                                 | ND                 | ND               | ND                 | ND              | 0.005            | 0.009   | ND      | 0.005   |  |
| Selenium    | 7782492                                 | ND                 | ND               | ND                 | ND              | ND               | ND      | ND      | ND      |  |
| Silver      | 7440224                                 | C 0.05             | ND               | ND                 | ND              | ND               | C 0.04  | ND      | ND      |  |

September 1998

|                  | Table 11 (cont'd): Analytical Data for the Milwaukee Facilities. |                    |        |          |          |        |        |        |        |  |  |  |  |
|------------------|------------------------------------------------------------------|--------------------|--------|----------|----------|--------|--------|--------|--------|--|--|--|--|
| Constituent      | CAS No.                                                          | F1-01 <sup>1</sup> | F1-02  | F5-01    | F5-02    | F16-01 | F16-02 | F8-01  | F8-02  |  |  |  |  |
|                  | General Chemistry mg/kg                                          |                    |        |          |          |        |        |        |        |  |  |  |  |
| Chloride         | 16887006                                                         | 2,400              | 13,000 | 1,000    | 1,200    | 2,200  | 190    | 8,800  | 8,000  |  |  |  |  |
| Fluoride         | 16984488                                                         | 300                | 1,600  | 82       | 120      | 61     | 120    | 48     | 17     |  |  |  |  |
| Hex. Chromium    | 18540299                                                         | C 0.66             | C 0.60 | 0.66     | C 0.10   | C 0.18 | C 0.10 | C 0.43 | C 0.19 |  |  |  |  |
| Total Cyanide    | 57125                                                            | ND                 | ND     | 700      | 900      | ND     | ND     | ND     | ND     |  |  |  |  |
| Amenable Cyanide | E-10275                                                          | ** 12              | ** 18  | ** 2,700 | ** 1,300 | ND     | ND     | ND     | ND     |  |  |  |  |
| Percent Solids   |                                                                  | 14.8               | 16.5   | 43.5     | 45.9     | 25.1   | 31.3   | 19.9   | 18.8   |  |  |  |  |

Notes: All results reported on a dry-weight basis

1. Facility F4's F006 samples were designated as F1.

B Analyte also detected in the associated method blank analysis.

C Reported value is less than the method quantitation limit (QL) but greater than the instrument detection limit (IDL).

\*\* Reported value is the concentration of cyanide after chlorination. Since this value is greater than the total cyanide result, a value for the cyanide amenable to chlorination cannot be calculated.

ND Non-detect

|             | Table 11 (cont'd): Analytical Data for the Milwaukee Facilities. |         |             |                |                |         |         |         |        |  |  |  |
|-------------|------------------------------------------------------------------|---------|-------------|----------------|----------------|---------|---------|---------|--------|--|--|--|
| Constituent | CAS No.                                                          | F17-01  | F17-02      | F11-01         | F11-02         | F13-02  | F14-01  | F9-01   | F9-02  |  |  |  |
|             | Total Metals - Methods 6020, 7471 mg/kg (cont.)                  |         |             |                |                |         |         |         |        |  |  |  |
| Aluminum    | 7429905                                                          | 1,260   | 1,360       | 1,800          | 1,650          | 311     | 2,320   | 27,000  | 13,200 |  |  |  |
| Antimony    | 7440360                                                          | C 0.62  | C 0.63      | 14.2           | 11.1           | C 0.57  | C 2.0   | 5.4     | 13.5   |  |  |  |
| Arsenic     | 7440382                                                          | 3.8     | 4.1         | 13.0           | 6.5            | C 2.3   | 13.4    | 4.8     | 3.1    |  |  |  |
| Barium      | 7440393                                                          | 29.4    | 43.5        | 227            | 159            | C 6.0   | 29.2    | 298     | 257    |  |  |  |
| Beryllium   | 7440417                                                          | ND      | ND          | ND             | ND             | ND      | ND      | ND      | ND     |  |  |  |
| Bismuth     | 7440699                                                          | ND      | ND          | C 1.7          | C 1.8          | ND      | ND      | 72.5    | 31.5   |  |  |  |
| Cadmium     | 7440439                                                          | 39,300  | 21,600      | 12.5           | 7.3            | ND      | 3.9     | 2.1     | 17.3   |  |  |  |
| Calcium     | 7440702                                                          | 141,000 | 140,000     | 16,100         | 14,800         | 855     | 18,000  | 87,000  | 70,000 |  |  |  |
| Chromium    | 7440473                                                          | 14,000  | 9,250       | 31,100         | 48,100         | 193     | 26,900  | 28,200  | 94,000 |  |  |  |
| Copper      | 7440508                                                          | 21,900  | 18,600      | 8,980          | 11,300         | 33.6    | 54.6    | 20,700  | 15,000 |  |  |  |
| Iron        | 7439896                                                          | 24,300  | 17,400      | 58,800         | 69,300         | 3,350   | 194,000 | 105,000 | 80,800 |  |  |  |
| Lead        | 7439921                                                          | 221     | 237         | 527            | 230            | C 0.59  | 64.8    | 439     | 410    |  |  |  |
| Magnesium   | 7439954                                                          | 12,900  | 12,300      | 13,500         | 13,700         | 355     | 9,990   | 44,300  | 30,300 |  |  |  |
| Manganese   | 7439965                                                          | 244     | 199         | 557            | 707            | C 3.8   | 979     | 1,070   | 1,170  |  |  |  |
| Mercury     | 7439976                                                          | ND      | C 0.12      | ND             | C 0.29         | ND      | ND      | 0.35    | 0.58   |  |  |  |
| Nickel      | 7440020                                                          | 83,000  | 35,100      | 180,000        | 84,600         | 76,000  | 57.1    | 14,800  | 18,700 |  |  |  |
| Selenium    | 7782492                                                          | 2.1     | 2.1         | 7.3            | 5.0            | ND      | 5.7     | 1.9     | ND     |  |  |  |
| Silver      | 7440224                                                          | C 0.52  | 1.5         | 163            | 657            | ND      | 4.4     | 65.0    | 230    |  |  |  |
| Sodium      | 7440235                                                          | 11,700  | 17,700      | 22,700         | 84,300         | 16,400  | 3,830   | 15,900  | 39,000 |  |  |  |
| Tin         | 7440315                                                          | 11.2    | 13.8        | 3,550          | 8,070          | 9.0     | 19.5    | 1,100   | 681    |  |  |  |
| Zinc        | 7440666                                                          | 35,500  | 44,600      | 129,000        | 94,400         | C 6.1   | 277,000 | 67,200  | 83,900 |  |  |  |
|             |                                                                  |         | TCLP Metals | s - Methods 13 | 311, 6010, 747 | 70 mg/L |         |         |        |  |  |  |
| Arsenic     | 7440382                                                          | ND      | ND          | ND             | ND             | ND      | ND      | ND      | ND     |  |  |  |
| Barium      | 7440393                                                          | C 1.3   | C 1.1       | C 1.3          | C 0.7          | C 0.4   | C 1.3   | C 1.1   | C 0.8  |  |  |  |
| Cadmium     | 7440439                                                          | 13.3    | 5.7         | 0.06           | 0.11           | ND      | C 0.03  | ND      | ND     |  |  |  |
| Chromium    | 7440473                                                          | ND      | ND          | 3.1            | 0.64           | 1.9     | 0.2     | 0.9     | 13.1   |  |  |  |
| Lead        | 7439921                                                          | ND      | ND          | ND             | ND             | ND      | ND      | ND      | ND     |  |  |  |
| Mercury     | 7439976                                                          | ND      | ND          | ND             | ND             | ND      | ND      | ND      | ND     |  |  |  |
| Selenium    | 7782492                                                          | 0.08    | ND          | ND             | ND             | ND      | ND      | ND      | C 0.04 |  |  |  |
| Silver      | 7440224                                                          | ND      | ND          | ND             | C 0.08         | ND      | ND      | ND      | ND     |  |  |  |

September 1998

|                         |                         | Table 1 | 1 (cont'd): | <b>Analytical Dat</b> | ta for the Mil | waukee Faci | ilities. |        |       |  |  |
|-------------------------|-------------------------|---------|-------------|-----------------------|----------------|-------------|----------|--------|-------|--|--|
| Constituent             | CAS No.                 | F17-01  | F17-02      | F11-01                | F11-02         | F13-02      | F14-01   | F9-01  | F9-02 |  |  |
|                         | General Chemistry mg/kg |         |             |                       |                |             |          |        |       |  |  |
| Chloride                | 16887006                | 5,500   | 13,0        | 00 690                | 30,000         | 17,000      | 2,700    | 12,000 | 23,00 |  |  |
| Fluoride                | 16984488                | C 0.7   | 1           | .2 99                 | 48             | 120         | 250      | 200    | 1,40  |  |  |
| Chromium,<br>hexavalent | 18540299                | 19      | С 3         | .7 26                 | 0.43           | 0.50        | 2.6      | 29     | 1,00  |  |  |
| Total Cyanide           | 57125                   | 380     |             | 99 16                 | 6.6            | 2.0         | 200      | 46     | 7     |  |  |
| Amenable Cyanide        | E-10275                 | ** 940  | ** 1        | 30 3.0                | 3.3            | ** 11       | 30       | 12     | 5     |  |  |
| Percent Solids          |                         | 65.9    | 77          | .4 38.2               | 54.9           | 54.1        | 37.7     | 74.3   | 69.   |  |  |

Notes:

\* All results reported on a dry-weight basis.
B Analyte also detected in the associated method blank analysis.
C Reported value is less than the method quantitation limit (QL) but greater than the instrument detection limit (IDL).

\*\* Reported value is the concentration of cyanide after chlorination. Since this value is greater than the total cyanide result, a value for the cyanide amenable to chlorination cannot be calculated.

ND Non-detect

## 2. Chicago Benchmarking Study

This section provides a detailed presentation of data gathered in the Chicago Benchmarking Study, including a characterization of plating processes, pollution prevention and recycling practices, F006 characteristics, and site specific variations in the generation and management of F006 for ten facilities in Milwaukee. Table 12is the facility selection matrix used to select 10 facilities from 13 candidates. Table 13 presents information collected for each facility in the study. Table 14 summarizes the results of the laboratory analyses of F006 data and Table 15 presents detailed laboratory analysis results for each facility.

All Chicago facilities reported an annual quantity of waste generated. The total amount generated from all 10 facilities is approximately 1712 tons/year. Nine of the facilities recycle their F006 waste. One facility landfills its F006 waste. Fifteen F006 laboratory samples gathered.

|                                 | Table 12: Chicago Metal Finishing Facility Selection Matrix |                                           |                        |                           |                                  |                         |                        |                |                   |                                     |                                           |                    |                    |                              |
|---------------------------------|-------------------------------------------------------------|-------------------------------------------|------------------------|---------------------------|----------------------------------|-------------------------|------------------------|----------------|-------------------|-------------------------------------|-------------------------------------------|--------------------|--------------------|------------------------------|
| Selection<br>Criteria           | C1<br>Selected                                              | C2<br>Selected                            | C3<br>Selected         | C4<br>Selected            | C5<br>Selected                   | C6<br>Selected          | C7<br>Alternate        | C8<br>Selected | C9<br>Selected    | C10<br>Alternate                    | C11<br>Alternate                          | C12<br>Eliminated  | C13<br>Selected    | C14<br>Selected              |
| Type:<br>Captive/Job            | Job                                                         | Job                                       | Job                    | Job                       | Job                              | Job                     | Job                    | Job            | Job               | Job                                 | Job                                       | Job                | Job                | Job                          |
| Size                            | 80                                                          | 150                                       | 37                     | 43                        | 70                               | 30                      |                        | 60             | 50                |                                     | 35                                        | 120                |                    | 150                          |
| Main<br>Treatment<br>Technology | Alk/<br>PPT                                                 | Alk/<br>PPT                               | Alk/<br>PPT/IX         | Alk/<br>PPT/<br>Cr        | Alk/<br>PPT                      | Alk/<br>PPT             | Alk/<br>PPT            | Alk/<br>PPT    | Alk/<br>PPT       | Alk/<br>PPT                         | Alk/<br>PPT                               | Alk/<br>PPT        | Alk/<br>PPT        | Alk/<br>PPT                  |
| Treatment<br>Technology         | CFR                                                         | CFR/IX                                    | CFR                    | CFR                       | CFR/IX                           | CFR                     | CFR                    | CFR            | CFR               | CFR                                 | CFR                                       | CFR                | CFR                | CFR                          |
| Onsite<br>Recycle               | No                                                          | Yes                                       | Yes                    | Electro-<br>winning       | Au/Ag<br>Closed<br>System        | No                      |                        | No             | No                |                                     | Yes                                       | No                 | Au/Ag IX<br>System | No                           |
| Landfill                        | No                                                          | No                                        | No                     | No                        | No                               | No                      |                        | Yes            | Yes               |                                     | Yes                                       | Yes                | No                 | Yes                          |
| Main<br>Management<br>Method    | Recycle                                                     | Recycle                                   | Recycle                | Recycle                   | Reclaim                          | Recycle                 |                        | LF             | LF                |                                     | Lf/Recycle                                | LF                 | Reclaim            | LF                           |
| Finishing<br>Processes          | Cu/Ni/Cr                                                    | Cu/Ni/Cr<br>E-Ni<br>HCr<br>Zn(nCN)/<br>Fe | CdCN<br>Zn(nCN)/<br>Fe | Cu/Ni/Cr<br>Zn(CN)/<br>Fe | AuCN<br>AgCN<br>Nickel<br>Copper | Cu/Ni<br>Zn(nCN)/<br>Fe | CdCN<br>Zn(nCN)/<br>Fe | Cu/Ni/Cr       | Zn/Fe<br>Cu/Ni/Cr | CuCN/Ni<br>BrassCN<br>E-Ni<br>Zn/Fe | Cu/Ni/Cr<br>E-Ni<br>HCr<br>Zn(nCN)/<br>Fe | Electro-<br>polish | AuCN<br>AgCN       | Zn(CN)/<br>Fe<br>Zn<br>(nCN) |
| SURVEY?                         | Y                                                           | Ν                                         | Y                      | Y                         | Y                                | Ν                       | Ν                      | Y-SAIC         | Y-SAIC            | Ν                                   | Y-SAIC                                    | Y                  | Ν                  | Y                            |

| Table 13: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acility-Specific Information for Chica<br>Facility C1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | go Facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cu-CNCd-CNCu-Tin-ZnAu-CNBright dip of Cu alloyAg-CNNi/Cr on steelAcid-CuElectroless NiChromeTinsTin-NiTin-ZnTin-acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 - 28 tons/yr<br>Recycle (World Resources)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C1-01 - sludge collected from<br>supersack at drier output; slightly<br>warm; gray-green color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPENT PLATING SOLUTIONS<br>Filtration - E-Ni, Ni, Cu, Cd, Au, Sn, A<br>Carbon treatment - occasional use for<br>Replenishment - complete change for D<br>Purified water - DI treated on-site<br>Electrolytic dummying - as needed - N<br>Cyanide bath carbonate freezing - Na-<br>Precipitation - combined with bath filt<br>Monitor pH daily<br>Drag-in Reduction - pre-rinse with DI<br>High purity anodes (some tanks bagge<br>Non-chelated process chemistries in T<br>Non-CN process chemicals - approx. 5<br>Solvent degreasing alternatives - mine<br>Alkaline Cleaners - skimming, chrome<br>Have written procedures for bath make<br>Use process baths to maximum extent<br>Remove anodes from bath when they a<br>Perform regular maintenance of racks/<br>Pre-inspect parts to prevent processing<br>DRAG-OUT REDUCTION/RECOV/<br>Process Bath Operating Conc check<br>Process Bath Operating Temp auton<br>Wetting agents - some<br>Workpiece positioning<br>Withdrawal and Drainage Time - man<br>Drainage boards between all baths returned<br>Electrowinning on Au only<br>Meshpad Mist Eliminators - chrome<br><u>RINSE WATER</u><br>Spray or Fog Rinse/Rinse Water Agita<br>Increased Contact Time/Multiple Rinss<br>Countercurrent rinsing and flow restric<br>Recycling/Recovery of rinsewater<br>Manually turning off rinsewater when<br>Air agitation in rinse tanks | Ni/as needed<br>E-Ni only/soap dumped periodically<br>(i - primary<br>CN every winter, Cd<br>ration of carbon<br>water<br>d)<br>in-Zn bath<br>1/3 of chemicals non-CN<br>ral spirits and limited ultrasonic.<br>e reducers<br>e-up and additions<br>possible (no dump schedule)<br>ure idle<br>barrels<br>g of obvious rejects<br>E <u>RY</u><br>ed every other week<br>hated; daily<br>ual (operators trained)<br>irned to bath<br>it to bath<br>it to bath<br>to bath<br>with regard to P2 and control | C1 - 01       TCLP $(mg/l)$ Al - 4,390       As - ND         Sb - ND       Ba - ND         As - ND       Cd - 1.0         Ba - 1,080       Cr - 2.8         Be - ND       Pb - ND         Bi - ND       Hg - 0.001         Cd - 17,300       Se - ND         Ca - 47,400       Ag - 3.8         Cr - 83,000       Hex. Cr - 1,190         Cu - 40,000       Fe - 27,800         Pb - 10,300       Mg - 51,100         Mn - 332       Hg - ND         Ni - 98,800       Se - ND         Ag - 280       Na - 22,100         Sn - 13,800       Zn - 17,100         CN - 1,800       Not - 1,800 |

| Table 13 (cont'o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table 13 (cont'd): Facility-Specific Information for Chicago Facilities<br>Facility C2                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F006 Quantity and Management                                                                                                                                  | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Mg Anodizing Gold-CN<br>Cu/NiCr Electroless Ni<br>Zn (nCN) on Fe Chromic acid<br>Cu plating (nCN)<br>Ag-CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~347 tons/yr<br>Recycle (Horsehead)                                                                                                                           | <u>C2-01</u> - Sludge from roll-off bin; not<br>dried; ambient temp. cool;<br>consistency of fudge; chunky;<br>orange-brown; moist<br><u>C2-02</u> - Sludge from drier;<br>consistency of dirt; chocolate color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| SPENT PLATING SOLUTIONS<br>Filtration - some continuous<br>Carbon treatment to remove organic co<br>Purified water - DI<br>Precipitation combined with filtration<br>Monitoring - daily with on-site lab<br>Purer Anodes and Bags - depends on I<br>Nonchelated Process Chemistries<br>Non-CN process chemicals except Au<br>Solvent Degreasing Alternatives inclu-<br>Electrocurrent<br>Alkaline Cleaners including Skimming<br>Acid Purification - Ion exchange remo<br>DRAG-OUT REDUCTION/RECOV<br>Wetting Agents - required<br>Workpiece positioning<br>Withdrawal and Drainage Time<br>Drainage boards between tanks<br>Drag-out tanks<br>Ion Exchange chrome rinses (off-site)<br><u>RINSE WATER</u><br>Increased Contact Time/ Multiple Rin<br>Countercurrent Rinsing - some but lim<br>Flow controls - Flow restrictors<br>Recycle rinse water<br>Recycle solvents via Safety Kleen | on certain baths<br>path<br>/Ag<br>ding Hot alkaline cleaning and<br>g and Coalescer on barrel lines<br>wes metals<br>ERY<br>ses - manual rinse with DI water | $\begin{array}{c} \textbf{C2 - 01} \\ \hline \underline{Total} \ (mg/kg) \\ Al - 45,900 \\ Sb -ND \\ As -ND \\ Ba -65 \\ Be -ND \\ Bi - 66 \\ Cd - 3,740 \\ Ca - 32,900 \\ Cr - 9,300 \\ Hex. Cr - 53 \\ Cu - 1,210 \\ Fe - 29,500 \\ Pb - 170 \\ Mg - 161,000 \\ Mn - 1,240 \\ Hg - ND \\ Ni - 1,640 \\ Se - ND \\ Ag -27 \\ Na - 29,600 \\ Sn - 1,270 \\ Zn - 62,000 \\ CN - 3.3 \\ \hline \underline{TCLP} \ (mg/l) \\ As -ND \\ Ba -ND \\ Cd - 0.19 \\ Cr - 0.08 \\ Pb - ND \\ Hg -ND \\ Hg -ND \\ Se - ND \\ Ag -ND \\ \hline \end{array}$ | C2-02         Total (mg/kg)         Al -27,900       Sb - ND         As - ND       Ba - 76         Be - ND       Bi - 19         Cd - 4,440       Ca - 26,400         Cr - 18,700       Hex. Cr - 11         Cu - 1,600       Fe - 40,400         Pb - 161       Mg - 111,000         Mn - 1,010       Hg - ND         Ni - 7,390       Se - ND         Ag - 88       Na - 33,100         Sn - 2,090       Zn - 89,200         CN - 0.8       TCLP (mg/l)         As - ND       Ba - ND         Cd - 0.16       Cr - 0.09         Pb - ND       Hg - ND         Ag - ND       Xe - ND |  |  |

| Table 13 (cont'o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 13 (cont'd): Facility-Specific Information for Chicago FacilitiesFacility C3                               |                                                                                                                                                                                                                                                                                                                  |                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F006 Quantity and Management                                                                                     | Sample Descripti                                                                                                                                                                                                                                                                                                 | ion                                                                                                      |  |  |
| Cd-CN<br>Zn(non CN) on Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~90 tons/yr<br>Recycle (Horsehead)                                                                               | <u>C3-01S</u> - Sludge from left filter<br>press; mix of wet/soft and wet/hard<br>sludge; brown color; fudge<br>consistency                                                                                                                                                                                      |                                                                                                          |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  | Sample Characte                                                                                                                                                                                                                                                                                                  | eristics (Dry wt.)                                                                                       |  |  |
| SPENT PLATING SOLUTIONS         General Bath Life Extensions         Carbon Treatment - as needed         Monitoring - 3-4 times / day         Housekeeping - 1 person in charge of I         Nonchelated Process Chemistries         Solvent Degreasing Alternatives - Hot         Alkaline Cleaners - Skimming         DRAG-OUT REDUCTION         Process Bath Operating Concentration         Process Bath Operating Temperature - controls         Withdrawal and Drainage Time         Drainage Boards         Drag-Out Tanks - Cd line has dead rin         RINSE WATER         Improved Rinsing Efficiency - Counte         Flow Restrictors | Alkaline Cleaning and Electrocurrent<br>in the process of installing temp.<br>se and is returned to plating bath | C3 - 01S<br>Total (mg/kg)<br>A1 -597<br>Sb -ND<br>As -39<br>Ba -167<br>Be -ND<br>Bi - ND<br>Cd -788<br>Ca -30,200<br>Cr -10,700<br>Hex. Cr - 33<br>Cu -86<br>Fe - 156,000<br>Pb - 581<br>Mg -27,200<br>Mn -3,300<br>Hg - ND<br>Ni - 106<br>Se - ND<br>Ag -ND<br>Na -8,200<br>Sn -68<br>Zn -262,000<br>CN - 3,240 | <u>TCLP</u> (mg/l)<br>As -ND<br>Ba -0.7<br>Cd -1.57<br>Cr - ND<br>Pb - ND<br>Hg -ND<br>Se - ND<br>Ag -ND |  |  |

| Table 13 (cont'd): Facility-Specific Information for Chicago Facilities<br>Facility C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F006 Quantity and Management                                                                                                                                                                                                                                                           | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Cu/Ni/Cr on brassZn-CNCu (Alkaline)Cd-CNDull and Bright NiSn-acidNi/Cr on steelBright dip of CuZn phosphateChromating of Al60/40 (Sn/Pb) solderChromating of Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~73 tons/yr<br>Recycle (Horsehead)                                                                                                                                                                                                                                                     | <u>C4-01S</u> - Sludge from lugger box<br>under filter press: fudge consistency,<br>cool, chocolate-brown color, cake<br>formed into 1 ½ inch thick layers,<br>estimated at 75% water                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                        | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| SPENT PLATING SOLUTIONSFiltration on the Tin, Ni, and Cu bathsCarbon Treatment in the Ni and Cu bathsCyanide Bath Carbonate FreezingPrecipitation - occasionally on tinsMonitoring - once/wk at minimumPurer Anodes and BagsHexavalent for trivalent Chrome in clesSolvent Degreasing alternatives: hot aultrasonicAlkaline Cleaners - skimmingWaste reduction study conductedPre-inspect parts to prevent processingPerform regular maintenance of racksRemove anodes from bath when they aUse process baths to maximum extentHave written procedures for bath makeWaste stream segregation of contact atStrict chemical inventory controlEvaluation of recycling alternativesDRAG-OUT REDUCTION/RECOVIProcess Bath Operating ConcentrationWetting Agents - add to Ni bathsWorkpiece PositioningWithdrawal and Drainage Time and BDrag-Out TanksElectrowinning for CdRINSE WATERSpray Rinse/Rinse Water Agitation - sCountercurrent Rinsing - 2 and 3-stagRecycle/Recovery of SolventsEliminate rinsewaters to waste treatmentManually turning off rinsewater whenFlow restrictorsOTHERConduct employee education for P2Housekeeping - QA manager controls | aths<br>a, Zn, Cr<br>ear chromate conversion coating<br>lkaline cleaning, electrocurrent, &<br>g of obvious rejects<br>/barrels<br>are idle<br>possible<br>e-up and additions<br>nd non-contact wastewaters<br>EEY<br>a and Temperature<br>oards<br>come tin<br>e<br>ent<br>not in use | C4 - 01S       TCLP (mg/l)         Al -41,000       As -ND         Sb -ND       Ba -ND         As -ND       Cd -1.26         Ba -715       Cr - ND         Be -37       Pb - ND         Bi - ND       Hg -ND         Cd -6,040       Se - ND         Ca -63,500       Ag -ND         Cr -50,800       Hex. Cr - 28         Cu -9,940       Fe - 124,000         Pb - 2,320       Mg -49,500         Mn -1,690       Hg - ND         Ni - 11,300       Se - ND         Ag -110       Na -4,440         Sn -36,200       Zn -176,000         CN - 3,740       Si - 3,740 |  |  |

| Table 13 (cont'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 13 (cont'd): Facility-Specific Information for Chicago Facilities         Facility C6                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Descript                                                                                                                                                                                   | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Electroless Ni Ni<br>Cu-CN Sn<br>Zn Ag-CN<br>Au-CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mixed with absord<br>Absorbex; black a<br>sludge is 2 days o<br><u>C6-02</u> - Sludge fr                                                                                                          | and greenish-gray;<br>ld<br>om superbag in<br>y and brown; clay                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| SPENT PLATING SOLUTIONSFiltration - continuousCarbon Treatment - periodicallyPurified Water - for NiElectrolytic Dummying - for NiCyanide Bath Carbonate Freezing - andPrecipitation - periodicallyMonitoring - weekly to outside labs/daidHousekeeping - lab controls bath chemePurer Anodes and Bags - Silver 99.998Hexavalent Chrome Alternatives - Triveconversion coatingsSolvent Degreasing Alternatives - HotAlkaline Cleaners - SkimmingDRAG-OUT REDUCTION/RECOVEWetting Agents - present in formula freeWithdrawal and Drainage Time - TrainDrainage BoardsDrag-Out Tanks (Dead Rinse)Electrowinning - Gold (periodic); SilveNickel drag out sent back to plating baRINSE WATERImproved Rinsing EfficiencySpray Rinse/Rinse Water Agitation (ACountercurrent Rinsing - 2-stageFlow Restrictors | ily-weekly internally<br>istry<br>3%; Gold 99.999%; Nickel 98%<br>valent chrome for clear/blue bright<br>Alkaline Cleaning and Electrocurrent<br>ERY<br>om vendor<br>ing<br>er (continuous)<br>th | $\begin{array}{c} \textbf{C6 - 01} \\ \hline \underline{Total} \ (mg/kg) \\ Al -5,350 \\ Sb -207 \\ As -ND \\ Ba -119 \\ Be -20 \\ Bi - ND \\ Cd -51 \\ Ca -63,000 \\ Cr -698 \\ Hex. Cr - 7 \\ Cu -37,500 \\ Fe - 24,600 \\ Pb - 326 \\ Mg -53,400 \\ Mn -799 \\ Hg - ND \\ Ni - 77,100 \\ Se - ND \\ Ag -272 \\ Na -37,200 \\ Sn -9,740 \\ Zn -24,400 \\ CN - 373 \\ \hline \underline{TCLP} \ (mg/l) \\ As -ND \\ Ba -ND \\ Cd -ND \\ Cr - ND \\ Pb - ND \\ Hg -0.002 \\ Se - ND \\ Ag - 0.29 \\ \end{array}$ | C6-02<br>Total (mg/kg)<br>Al - 1,740<br>Sb - ND<br>As -ND<br>Ba - 54<br>Be - 10<br>Bi - 35<br>Cd - ND<br>Ca - 13,000<br>Cr - 59,400<br>Hex. Cr - 174<br>Cu - 21,900<br>Fe - 47,000<br>Pb - 109<br>Mg - 6,100<br>Mn - 746<br>Hg - ND<br>Ni - 21,500<br>Se - ND<br>Ag - 32<br>Na - 89,200<br>Sn - 12,100<br>Zn - 81,400<br>CN - 240<br>TCLP (mg/l)<br>As - ND<br>Ba - ND<br>Cd - ND<br>Cd - ND<br>Cr - 0.08<br>Pb - ND<br>Hg - ND<br>Se - ND<br>Ag - ND<br>Hg - ND<br>Se - ND<br>Ag - ND |  |

| Table 13 (cont'o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 13 (cont'd): Facility-Specific Information for Chicago FacilitiesFacility C7                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Description                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Plant 1:Plant 2:Ag (CN)Sn (Dull)Cu-CNNi (Sulfamate)Acid-SnCu-CNElectroless NiSn (Bright Acid)Cu-acidSolder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>C7-01S</u> - From supersack; reddishbrown and some greenish-gray,<br>muddy/clayey consistency<br><u>C7-02S</u> - from supersack, big<br>chunks, very hard but breakable,<br>red-brown, ambient temperature,<br>smells like paint -Plant 2 |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                              | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                      | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| SPENT PLATING SOLUTIONS<br>Filtration - removes organics<br>Carbon Treatment<br>Purified Water - DI<br>Electrolytic Dummying<br>Precipitation<br>Monitoring - at least weekly<br>Purer Anodes and Bags - 99.9%<br>Solvent Degreasing Alternatives - Hot<br>Alkaline Cleaners - Skimming for oil<br>DRAG-OUT REDUCTION/RECOVI<br>Process Bath Operating Concentration<br>Process Bath Operating Temperature<br>Wetting Agents - in Brightener<br>Workpiece Positioning<br>Withdrawal and Drainage Time<br>Silver rinse - Either electrowinning or<br><u>RINSE WATER</u><br>Spray Rinse/Rinse Water Agitation - A<br>Countercurrent Rinsing - 2-stage on m<br>Flow Restrictors | ERY<br>electrodialysis                                                                                                                                                                                                                       | C7 - 01S<br>Total (mg/kg)<br>Al -4,510<br>Sb -ND<br>As -ND<br>Ba -20<br>Be -ND<br>Bi - ND<br>Cd -9<br>Ca -11,000<br>Cr -161<br>Hex. Cr ND<br>Cu -21,400<br>Fe - 1,510<br>Pb - 47<br>Mg -336,000<br>Mn -103<br>Hg - ND<br>Ni - 27,100<br>Se - ND<br>Ag -253<br>Na -1,060<br>Sn -9,680<br>Zn -1,070<br>CN - 2,480<br>TCLP (mg/l)<br>As -ND<br>Ba -ND<br>Cd -ND<br>Cr - ND<br>Pb - ND<br>Hg -ND<br>Se - ND<br>Ag -0.07 | C7-02S<br>Total (mg/kg)<br>Al -493<br>Sb - ND<br>As - ND<br>Ba - 27<br>Be - ND<br>Bi -54<br>Cd - ND<br>Ca - 16,100<br>Cr - 127<br>Hex. Cr - ND<br>Cu - 23,800<br>Fe - 131,000<br>Pb - 2,080<br>Mg - 242,000<br>Mn - 523<br>Hg - ND<br>Ni - 10,100<br>Se - ND<br>Ag - ND<br>Na - 1,230<br>Sn - 36,600<br>Zn - 2,060<br>CN - 725<br>TCLP (mg/l)<br>As - ND<br>Ba - ND<br>Cd - ND<br>Cd - ND<br>Cr - ND<br>Pb - ND<br>Hg - ND<br>Se - ND<br>Hg - ND |  |  |

| Table 13 (cont'o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 13 (cont'd): Facility-Specific Information for Chicago Facilities<br>Facility C8                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F006 Quantity and Management                                                                                                                   | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Zn plating ~135 tons/yr<br>Acid Chloride<br>Alkaline - non CN<br>Chromating BFI landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                | <u>C8-01</u> - Sludge from supersack at<br>continuous filter press; soft and<br>moist; waxy; green/gray<br><u>C8-02</u> - Sludge from batch tank<br>filter press; clay consistency;<br>green/gray; outer layer has rust color<br>probably due to iron oxidation.                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | teristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| SPENT PLATING SOLUTIONS<br>Continuous Filtration<br>Carbon Treatment - intermittently<br>Replenishment - bleed off growth<br>Electrolytic Dummying - as needed<br>Monitoring - daily<br>Purer Anodes and Bags - 99.99% Zind<br>Hexavalent Chrome Alternatives - Tri<br>Nonchelated Process Chemicals - Dro<br>Solvent Degreasing Alternatives: Hot<br>Alkaline Cleaners - Skimming<br>DRAG-OUT REDUCTION/RECOV<br>Process Bath Operating Concentration<br>Process Bath Operating Temperature<br>Wetting Agents<br>Workpiece Positioning<br>Withdrawal and Drainage Time<br>Spray or Fog Rinses<br>Drainage Boards<br>Drag-Out Tanks - plating baths<br>Portion of drag out returned to plating<br>RINSE WATER<br>Improved Rinsing Efficiency: Spray R<br>Countercurrent Rinsing where feasible<br>Flow Restrictors | valent clear chrome<br>opped Cyanide plating in 1993<br>alkaline cleaning and Electrocurrent<br>ERY<br>t<br>bath<br>inse/Rinse Water Agitation | $\begin{array}{c} \textbf{C8 - 01} \\ \hline \underline{Total} \ (mg/kg) \\ Al -204 \\ Sb -ND \\ As -ND \\ Ba -58 \\ Be -ND \\ Bi - ND \\ Cd -11 \\ Ca -15,000 \\ Cr -11,000 \\ Hex. Cr -160 \\ Cu -401 \\ Fe - 24,600 \\ Pb - 30 \\ Mg -10,800 \\ Mn -438 \\ Hg - ND \\ Ni - 452 \\ Se - ND \\ Ag -109 \\ Na -10,400 \\ Sn -ND \\ Zn -460,000 \\ CN - 3 \\ \hline \underline{TCLP} \ (mg/l) \\ As -ND \\ Ba -ND \\ Cd -0.02 \\ Cr - 0.04 \\ Pb - ND \\ Hg -ND \\ Hg -ND \\ Se - ND \\ Ag -ND \\ Se - ND \\ Ag -ND \\ \hline \end{array}$ | $\begin{array}{c} \textbf{C8-02} \\ \hline Total (mg/kg) \\ Al -153 \\ Sb - ND \\ As - ND \\ Ba - 45 \\ Be - ND \\ Bi - ND \\ Cd - ND \\ Cd - ND \\ Cd - ND \\ Ca - 4,040 \\ Cr - 59,000 \\ Hex. Cr - 29 \\ Cu - 120 \\ Fe - 56,300 \\ Pb - 49 \\ Mg - 1,340 \\ Mn - 569 \\ Hg - ND \\ Ni - 257 \\ Se - ND \\ Ag - 112 \\ Na - 56,400 \\ Sn - ND \\ Zn - 345,000 \\ CN - 285 \\ \hline \underline{TCLP} (mg/l) \\ As - ND \\ Ba - 0.80 \\ Cd - ND \\ Cr - ND \\ Pb - ND \\ Hg - ND \\ Hg - ND \\ Se - ND \\ Hg - ND \\ Se - ND \\ Ag - ND \\ \hline \end{array}$ |  |  |

| Table 13 (cont'o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 13 (cont'd): Facility-Specific Information for Chicago FacilitiesFacility C9 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F006 Quantity and Management                                                       | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Zn-acid plating<br>Cd-acid plating<br>Cu/Ni<br>Chromating<br>Phosphating<br>230-300 tons/yr<br>Recycle (Envirite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | <u>C9-01</u> - Dried sludge from<br>supersack after sludge drier, warm,<br>dark chocolate-brown color,<br>granular to powdery consistency<br><u>C9-02</u> - Sludge from a supersack<br>dated the previous week, dry/moist<br>mix, reddish-brown, chunky and<br>powdery, ambient air temp                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    | Sample Characte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| SPENT PLATING SOLUTIONS<br>Filtration - Zn baths as needed<br>Carbon Treatment - as needed<br>Purified Water - DI for chromates<br>Precipitation - Fe removal in Zn baths,<br>Monitoring - daily<br>Housekeeping - manager authorizes ba<br>Purer Anodes and Bags - min. 99.9%<br>Hexavalent Chrome Alternatives - Triv<br>Nonchelated Process Chemicals - No<br>Solvent Degreasing Alternatives: Hot a<br>DRAG-OUT REDUCTION<br>Wetting Agents<br>Workpiece Positioning<br>Withdrawal and Drainage Time<br>Drainage Boards<br>Drag out Tanks - on rinses only<br><u>RINSE WATER</u><br>Countercurrent Rinsing - 2 - 3-stage<br>Flow Restrictors<br>Recycle/Recovery Rinse Water | nth additions/changes<br>valent chrome for clear chromates<br>CN                   | $\begin{array}{c} \textbf{C9-01} \\ \hline \underline{Total} \ (mg/kg) \\ Al -298 \\ Sb -ND \\ As -ND \\ Ba -578 \\ Be -ND \\ Bi - ND \\ Cd - 27,600 \\ Ca - 8,630 \\ Cr - 40,400 \\ Hex. Cr -6 \\ Cu - 388 \\ Fe - 185,000 \\ Pb - 5 \\ Mg -2,120 \\ Mn -2,130 \\ Hg - ND \\ Ni - 707 \\ Se - ND \\ Ag -225 \\ Na -7,840 \\ Sn -ND \\ Zn -115,000 \\ CN - 2.6 \\ \hline \underline{TCLP} \ (mg/l) \\ As -ND \\ Ba -ND \\ Cd -144 \\ Cr - 0.14 \\ Pb - ND \\ Hg -ND \\ Se - ND \\ Ag -ND \\ \hline \end{array}$ | $\begin{array}{c} \textbf{C9-02} \\ \hline Total (mg/kg) \\ Al -311 \\ Sb - ND \\ As - ND \\ Ba - 789 \\ Be - ND \\ Bi - ND \\ Cd - 13,800 \\ Ca - 17,000 \\ Cr - 32,200 \\ Hex. Cr -11 \\ Cu - 4,230 \\ Fe - 257,000 \\ Pb - 9 \\ Mg - 4,190 \\ Mn - 2,950 \\ Hg - ND \\ Ni - 2,950 \\ Hg - ND \\ Ni - 2,950 \\ Hg - ND \\ Ni - 2,730 \\ Se - NA \\ Ag - 173 \\ Na - 11,600 \\ Sn - ND \\ Zn - 175,000 \\ CN - 1.6 \\ \hline \hline \underline{TCLP} (mg/l) \\ As - ND \\ Ba - ND \\ Cd - 15.8 \\ Cr - 0.02 \\ Pb - ND \\ Hg - ND \\ Hg - ND \\ Se - ND \\ Hg - ND \\ Se - ND \\ Ag - ND \\ Ag - ND \\ \hline \end{array}$ |  |  |

| Table 13 (cont'o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 13 (cont'd): Facility-Specific Information for Chicago FacilitiesFacility C13 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F006 Quantity and Management                                                        | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Cu-CN Ni<br>Au-CN Ag-CN<br>Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 tons/yr<br>Recycle (United Refining)                                              | <u>C13-01</u> - Sludge from filter press<br>bag; 30-day old sludge; consistency<br>of cookies; chocolate-brown in color                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| SPENT PLATING SOLUTION<br>Filtration - as needed<br>Carbon Treatment - as needed (rarely)<br>Purified Water<br>Electrolytic Dummying - Silver uses<br>Monitoring - once a month/ weekly ad<br>Housekeeping - QC program to calcul<br>Purer Anodes and Bags - Silver 99.99<br>Solvent Degreasing Alternatives - Elec<br><u>DRAG-OUT REDUCTION/RECOVI</u><br>Wetting Agents<br>Withdrawal and Drainage Time - Train<br>Drag-Out Tanks (Dead Rinse)<br>Ion Exchange for Gold<br>Electrowinning for Silver - commercia<br><u>RINSE WATER</u><br>Countercurrent Rinsing - 2-stage for ti<br>Flow Restrictors<br>Recycling/Recovery of Solvents (sent to | ate usage<br>%<br>ctrocurrent<br><u>ERY</u><br>ning<br>Il unit<br>n                 | $\begin{array}{c} \textbf{C13 - 01} \\ \hline \underline{Total} \ (mg/kg) & \underline{TCLP} \ (mg/l) \\ Al - 564 & As -ND \\ Sb - 90 & Ba - ND \\ As -ND & Cd - ND \\ Ba - 143 & Cr - ND \\ Ba - 143 & Cr - ND \\ Be - 7 & Pb - ND \\ Bi - ND & Hg - 0.011 \\ Cd - 22 & Se - ND \\ Ca - 83,900 & Ag - 0.85 \\ Cr - 73 \\ Hex. Cr - 4 \\ Cu - 91,600 \\ Fe - 69,000 \\ Pb - 189 \\ Mg - 10,800 \\ Mn - 343 \\ Hg - ND \\ Ni - 9,010 \\ Se - ND \\ Ag - 351 \\ Na - 1,420 \\ Sn - 41,200 \\ Zn - 3,590 \\ CN - 3,310 \end{array}$ |  |  |  |

| Table 13 (cont'd): Facility-Specific Information for Chicago Facilities         Facility C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Zn-CN<br>Zn-Ni (CN)<br>Zn Ni (Alkaline?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 730 tons/yr<br>Recycle (Horsehead and Envirite)                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>C14-01</u> - Sludge from the<br>luggerbox; orange-brown; dry;<br>chunks the size of dimes and<br>smaller. Carbonate from carbonate<br>freezing of Ni bath combined with<br>dewatered sludge sent to driers                                                                                                                                                                                                                                                                                                                                   |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| SPENT PLATING SOLUTIONS<br>Filtration - continuous (paper/cartridge<br>Purified Water - for some applications<br>Cyanide Bath Carbonate Freezing for 2<br>Monitoring - daily or every-other day<br>Housekeeping - use assigned personne<br>Purer Anodes and Bags<br>Hexavalent Chrome Alternatives - Cr<br>Nonchelated Process Chemistries - no<br>Solvent Degreasing Alternatives - hot<br>(no solvents in process)<br>Alkaline Cleaners - Skimming grease a<br>centrifuging)<br>Stricter conformance with line prevent<br>Stricter conformance with SPC proced<br>Strict chemical inventory control<br>Perform routine bath analysis<br>Maintain bath analysis/addition logs<br>Have written procedures for bath make<br>Remove anodes from bath when they a<br>Regularly retrieve fallen parts/racks fre<br>Perform regular maintenance of racks/<br>Pre-inspect parts to prevent processing<br>Evaluate recycling alternatives<br>Research alternative plating technolog<br>DRAG-OUT REDUCTION/RECOVI<br>Process Bath Operating Concentration<br>Wetting Agents - rinsate chemicals; ac<br>Workpiece Positioning<br>Withdrawal and Drainage Time<br>Electrodialysis for black chromate<br><u>RINSE WATER</u><br>Spray Rinse/Rinse Water Agitation<br>Countercurrent Rinsing - 2-stage in me<br>Flow Restrictors<br>Recycle rinse waters - treated wastewa<br>Drip shields between tanks<br>Lower bath concentration<br>Manually turning off rinsewater when<br>Establish a preventative maintenance of | Zn-CN and Zn-alkaline-Ni<br>A for chemical additions<br><sup>13</sup> in blue dip process<br>chelated cleaners<br>alkaline cleaning and electrocurrent<br>and oil (investigating filtration and<br>ative maintenance schedule<br>bures<br>e-up and additions<br>we idle<br>om tanks<br>barrels<br>g of obvious rejects<br>ies<br><u>ERY</u><br>and Temperature - Daily<br>id-inhibitor in pickling acids<br>ost processes<br>tters recycled as needed<br>not in use | C14 - 01       TCLP (mg/l)         Al -390       As -ND         Sb -ND       Ba -ND         As -ND       Cd -0.06         Ba -48       Cr - 0.02         Be -ND       Pb - ND         Bi - ND       Hg -ND         Cd -31       Se - ND         Ca -18,200       Ag -ND         Cr -24,200       Hex. Cr -18         Cu -220       Fe - 129,000         Pb - 149       Mg -5,360         Mn -858       Hg - ND         Ni - 128       Se - ND         Se - ND       Ag -87         Na -16,500       Sn -ND         Zn -375,000       CN - 3,920 |  |  |

| Table 14: Summary of Chicago F006 Analytical Data |           |               |                                              |  |  |
|---------------------------------------------------|-----------|---------------|----------------------------------------------|--|--|
| Constituent                                       | # Samples | # Non Detects | # Samples Above Method<br>Quantitation Limit |  |  |
| <b>Total Metals Concentration</b>                 | n (mg/kg) |               |                                              |  |  |
| Aluminum                                          | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Antimony                                          | 15        | 13(87%)       | 2(13%)                                       |  |  |
| Arsenic                                           | 15        | 1(7%)         | 14(93%)                                      |  |  |
| Barium                                            | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Beryllium                                         | 15        | 11(73%)       | 4(27%)                                       |  |  |
| Bismuth                                           | 15        | 11(73%)       | 4(27%)                                       |  |  |
| Cadmium                                           | 15        | 3(20%)        | 12(80%)                                      |  |  |
| Calcium                                           | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Chromium                                          | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Copper                                            | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Iron                                              | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Lead                                              | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Magnesium                                         | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Manganese                                         | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Mercury                                           | 15        | 10(67%)       | 5(33%)                                       |  |  |
| Nickel                                            | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Selenium                                          | 15        | 15(100%)      | 0(0%)                                        |  |  |
| Silver                                            | 15        | 2(13%)        | 13(87%)                                      |  |  |
| Sodium                                            | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Tin                                               | 15        | 5(33%)        | 10(67%)                                      |  |  |
| Zinc                                              | 15        | 0(0%)         | 15(100%)                                     |  |  |
| TCLP (mg/l)                                       |           |               |                                              |  |  |
| Arsenic                                           | 15        | 15(100%)      | 0(0%)                                        |  |  |
| Barium                                            | 15        | 14(93%)       | 1(7%)                                        |  |  |
| Cadmium                                           | 15        | 6(40%)        | 9(60%)                                       |  |  |
| Chromium                                          | 15        | 7(47%)        | 8(53%)                                       |  |  |
| Lead                                              | 15        | 15(100%)      | 0(0%)                                        |  |  |
| Mercury                                           | 15        | 12(80%)       | 3(20%)                                       |  |  |
| Selenium                                          | 15        | 15(100%)      | 0(0%)                                        |  |  |
| Silver                                            | 15        | 11(7%)        | 4(93%)                                       |  |  |
| General Chemistry (mg/kg                          | )         |               |                                              |  |  |
| Chloride                                          | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Fluoride                                          | 15        | 5(33%)        | 10(67%)                                      |  |  |
| Chromium, hexavalent                              | 15        | 2(13%)        | 13(87%)                                      |  |  |
| Total Cyanide                                     | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Amenable Cyanide                                  | 15        | 0(0%)         | 15(100%)                                     |  |  |
| Percent Solids                                    | 15        | 0(0%)         | 15(100%)                                     |  |  |

|                                                              | Table 15: Detailed Chicago Analytical Data |           |             |             |             |         |        |        |  |  |
|--------------------------------------------------------------|--------------------------------------------|-----------|-------------|-------------|-------------|---------|--------|--------|--|--|
| Constituent                                                  | CAS No.                                    | C1-01     | C2-01       | C2-02       | C3-01S      | C4-01S  | C6-01  | C6-02  |  |  |
| Total Metals - Methods 6010A, 7471A, 7060A, 7421, 7740 mg/kg |                                            |           |             |             |             |         |        |        |  |  |
| Aluminum                                                     | 7429905                                    | 4,390     | 45,900      | 27,900      | 597         | 41,000  | 5,350  | 1,740  |  |  |
| Antimony                                                     | 7440360                                    | ND        | ND          | ND          | ND          | ND      | 207    | ND     |  |  |
| Arsenic                                                      | 7440382                                    | ND        | ND          | ND          | 39          | ND      | ND     | ND     |  |  |
| Barium                                                       | 7440393                                    | 1,080     | 65          | 76          | 167         | 715     | 119    | 54     |  |  |
| Beryllium                                                    | 7440417                                    | ND        | ND          | ND          | ND          | 37      | 20     | 10     |  |  |
| Bismuth                                                      | 7440699                                    | ND        | 66          | 19          | ND          | ND      | ND     | 35     |  |  |
| Cadmium                                                      | 7440439                                    | 17,300    | 3,740       | 4,440       | 788         | 6,040   | 51     | ND     |  |  |
| Calcium                                                      | 7440702                                    | 47,400    | 32,900      | 26,400      | 30,200      | 63,500  | 63,000 | 13,000 |  |  |
| Chromium                                                     | 7440473                                    | 83,000    | 9,300       | 18,700      | 10,700      | 50,800  | 698    | 59,400 |  |  |
| Copper                                                       | 7440508                                    | 40,000    | 1,210       | 1,600       | 86          | 9,940   | 37,500 | 21,900 |  |  |
| Iron                                                         | 7439896                                    | 27,800    | 29,500      | 40,400      | 156,000     | 124,000 | 24,600 | 47,000 |  |  |
| Lead                                                         | 7439921                                    | 10,300    | 170         | 161         | 581         | 2,320   | 326    | 109    |  |  |
| Magnesium                                                    | 7439954                                    | 51,100    | 161,000     | 111,000     | 27,200      | 49,500  | 53,400 | 6,100  |  |  |
| Manganese                                                    | 7439965                                    | 332       | 1,240       | 1,010       | 3,300       | 1,690   | 799    | 746    |  |  |
| Mercury                                                      | 7439976                                    | ND        | ND          | 0           | ND          | 0       | 0      | 0      |  |  |
| Nickel                                                       | 7440020                                    | 98,800    | 1,640       | 7,390       | 106         | 11,300  | 77,100 | 21,500 |  |  |
| Selenium                                                     | 7782492                                    | ND        | ND          | ND          | ND          | ND      | ND     | ND     |  |  |
| Silver                                                       | 7440224                                    | 280       | 27          | 88          | ND          | 110     | 272    | 32     |  |  |
| Sodium                                                       | 7440235                                    | 22,100    | 29,600      | 33,100      | 8,200       | 4,440   | 37,200 | 89,200 |  |  |
| Tin                                                          | 7440315                                    | 13,800    | 1,270       | 2,090       | 68          | 36,200  | 9,740  | 12,100 |  |  |
| Zinc                                                         | 7440666                                    | 17,100    | 62,000      | 89,200      | 262,000     | 176,000 | 24,400 | 81,400 |  |  |
|                                                              | ]                                          | CLP Metal | s - Methods | s 1311, 601 | 0A, 7470A m | ng/L    |        |        |  |  |
| Arsenic                                                      | 7440382                                    | ND        | ND          | ND          | ND          | ND      | ND     | ND     |  |  |
| Barium                                                       | 7440393                                    | ND        | ND          | ND          | 0.7         | ND      | ND     | ND     |  |  |
| Cadmium                                                      | 7440439                                    | 1.0       | 0.19        | 0.16        | 1.57        | 1.26    | ND     | ND     |  |  |
| Chromium                                                     | 7440473                                    | 2.8       | 0.08        | 0.09        | ND          | ND      | ND     | 0.08   |  |  |
| Lead                                                         | 7439921                                    | ND        | ND          | ND          | ND          | ND      | ND     | ND     |  |  |
| Mercury                                                      | 7439976                                    | 0.001     | ND          | ND          | ND          | ND      | 0.002  | ND     |  |  |
| Selenium                                                     | 7782492                                    | ND        | ND          | ND          | ND          | ND      | ND     | ND     |  |  |
| Silver                                                       | 7440224                                    | 3.8       | ND          | ND          | ND          | ND      | 0.29   | ND     |  |  |

| Table 15: Detailed Chicago Analytical Data                        |          |       |        |        |          |          |        |        |  |  |
|-------------------------------------------------------------------|----------|-------|--------|--------|----------|----------|--------|--------|--|--|
| Constituent                                                       | CAS No.  | C1-01 | C2-01  | C2-02  | C3-01S   | C4-01S   | C6-01  | C6-02  |  |  |
| General Chemistry - Methods 300.0, 335.2, 335.1, 7195/6010A mg/kg |          |       |        |        |          |          |        |        |  |  |
| Chloride                                                          | 16887006 | 2,720 | 7430   | 59,800 | 5,980    | 959      | 2,140  | 322    |  |  |
| Fluoride                                                          | 16984488 | 166   | 4210   | 1180   | ND       | 96.5     | 128    | 347    |  |  |
| Chromium, hex                                                     | 18540299 | 1,190 | 53     | 11     | 33       | 28       | 7      | 174    |  |  |
| Total Cyanide                                                     | 57125    | 1,800 | 3.3    | 0.8    | 3,240    | 3,740    | 373    | 240    |  |  |
| Amen. Cyanide                                                     | E-10275  | 110   | ** 6.2 | ** 2.6 | ** 4,940 | ** 5,340 | ** 471 | ** 354 |  |  |
| Percent Solids                                                    |          | 57.0  | 13.5   | 44     | 15.3     | 14.7     | 25     | 30.3   |  |  |

Notes: \* All results reported on a dry-weight basis. \*\* Reported value is the concentration of cyanide after chlorination. Since this value is greater than the total cyanide result, a value for the cyanide amenable to chlorination cannot be calculated.

ND = Not detected

|                                                              | Table 15: Detailed Chicago Analytical Data |              |              |             |                |            |         |        |         |  |
|--------------------------------------------------------------|--------------------------------------------|--------------|--------------|-------------|----------------|------------|---------|--------|---------|--|
| Constituent                                                  | CAS No.                                    | C7-01S       | C7-02S       | C8-01       | C8-02          | C9-01      | C9-02   | C13-01 | C14-01  |  |
| Total Metals - Methods 6010A, 7471A, 7060A, 7421, 7740 mg/kg |                                            |              |              |             |                |            |         |        |         |  |
| Aluminum                                                     | 7429905                                    | 4,510        | 493          | 204         | 153            | 298        | 311     | 564    | 390     |  |
| Antimony                                                     | 7440360                                    | ND           | ND           | ND          | ND             | ND         | ND      | 90     | ND      |  |
| Arsenic                                                      | 7440382                                    | ND           | ND           | ND          | ND             | ND         | ND      | ND     | ND      |  |
| Barium                                                       | 7440393                                    | 20           | 27           | 58          | 45             | 578        | 789     | 143    | 48      |  |
| Beryllium                                                    | 7440417                                    | ND           | ND           | ND          | ND             | ND         | ND      | 7      | ND      |  |
| Bismuth                                                      | 7440699                                    | ND           | 54           | ND          | ND             | ND         | ND      | ND     | ND      |  |
| Cadmium                                                      | 7440439                                    | 9            | ND           | 11          | ND             | 27,600     | 13,800  | 22     | 31      |  |
| Calcium                                                      | 7440702                                    | 11,000       | 16,100       | 15,000      | 4,040          | 8,630      | 17,000  | 83,900 | 18,200  |  |
| Chromium                                                     | 7440473                                    | 161          | 127          | 11,000      | 59,000         | 40,400     | 32,200  | 73     | 24,200  |  |
| Copper                                                       | 7440508                                    | 21,400       | 23,800       | 401         | 120            | 388        | 4,230   | 91,600 | 220     |  |
| Iron                                                         | 7439896                                    | 1,510        | 131,000      | 24,600      | 56,300         | 185,000    | 257,000 | 69,600 | 129,000 |  |
| Lead                                                         | 7439921                                    | 47           | 2,080        | 30          | 49             | 5          | 9       | 189    | 149     |  |
| Magnesium                                                    | 7439954                                    | 336,000      | 242,000      | 10,800      | 1,340          | 2,120      | 4,190   | 10,800 | 5,360   |  |
| Manganese                                                    | 7439965                                    | 103          | 523          | 438         | 569            | 2,130      | 2,950   | 343    | 858     |  |
| Mercury                                                      | 7439976                                    | ND           | ND           | ND          | ND             | ND         | ND      | 0      | ND      |  |
| Nickel                                                       | 7440020                                    | 27,100       | 10,100       | 452         | 257            | 707        | 2,730   | 9,010  | 128     |  |
| Selenium                                                     | 7782492                                    | ND           | ND           | ND          | ND             | ND         | ND      | ND     | ND      |  |
| Silver                                                       | 7440224                                    | 253          | ND           | 109         | 112            | 225        | 173     | 351    | 87      |  |
| Sodium                                                       | 7440235                                    | 1,060        | 1,230        | 10,400      | 56,400         | 7,840      | 11,600  | 1,420  | 16,500  |  |
| Tin                                                          | 7440315                                    | 9,680        | 36,600       | ND          | ND             | ND         | ND      | 41,200 | ND      |  |
| Zinc                                                         | 7440666                                    | 1,070        | 2,060        | 460,000     | 345,000        | 115,000    | 175,000 | 3,590  | 375,000 |  |
|                                                              |                                            | TCLP         | Metals - Met | thods 1311, | 6010A, 7470    | )A mg/L    |         |        |         |  |
| Arsenic                                                      | 7440382                                    | ND           | ND           | ND          | ND             | ND         | ND      | ND     | ND      |  |
| Barium                                                       | 7440393                                    | ND           | ND           | ND          | 0.80           | ND         | ND      | ND     | ND      |  |
| Cadmium                                                      | 7440439                                    | ND           | ND           | 0.02        | ND             | 144        | 15.8    | ND     | 0.06    |  |
| Chromium                                                     | 7440473                                    | ND           | ND           | 0.04        | ND             | 0.14       | 0.02    | ND     | 0.02    |  |
| Lead                                                         | 7439921                                    | ND           | ND           | ND          | ND             | ND         | ND      | ND     | ND      |  |
| Mercury                                                      | 7439976                                    | ND           | ND           | ND          | ND             | ND         | ND      | 0.011  | ND      |  |
| Selenium                                                     | 7782492                                    | ND           | ND           | ND          | ND             | ND         | ND      | ND     | ND      |  |
| Silver                                                       | 7440224                                    | 0.07         | ND           | ND          | ND             | ND         | ND      | 0.85   | ND      |  |
|                                                              | Ger                                        | neral Chemis | try - Method | s 300.0, 33 | 5.2, 335.1, 71 | 95/6010A n | ng/kg   |        |         |  |
| Chloride                                                     | 16887006                                   | 421          | 594          | 11,300      | 70,100         | 2,380      | 7,250   | 2,380  | 1,270   |  |

| Table 15: Detailed Chicago Analytical Data |          |          |          |        |       |        |        |        |        |  |
|--------------------------------------------|----------|----------|----------|--------|-------|--------|--------|--------|--------|--|
| Constituent                                | CAS No.  | C7-01S   | C7-02S   | C8-01  | C8-02 | C9-01  | C9-02  | C13-01 | C14-01 |  |
| Fluoride                                   | 16984488 | 42.4     | 17.5     | ND     | ND    | 343    | ND     | ND     | 416    |  |
| Chromium, hex.                             | 18540299 | ND       | ND       | 160    | 29    | 6      | 11     | 4      | 18     |  |
| Total Cyanide                              | 57125    | 2,480    | 725      | 3      | 285   | 2.6    | 1.6    | 3,310  | 3,920  |  |
| Amen. Cyanide                              | E-10275  | ** 4,050 | ** 1,100 | ** 4.3 | 285   | ** 3.5 | ** 3.1 | 250    | 830    |  |
| Percent Solids                             |          | 47.4     | 41.1     | 15.8   | 23.5  | 45.7   | 41.4   | 32.8   | 40.4   |  |

Notes: \* All results reported on a dry-weight basis. \*\* Reported value is the concentration of cyanide after chlorination. Since this value is greater than the total cyanide result, a value for the cyanide amenable to chlorination cannot be calculated.

ND = Not detected

## 3. Phoenix Benchmarking Study

This section provides a detailed presentation of data gathered in the Phoenix Benchmarking Study, including a characterization of plating processes, pollution prevention and recycling practices, F006 characteristics, and site specific variations in the generation and management of F006 for ten facilities in Phoenix. Table 16 is the facility selection matrix used to select 10 facilities from 13 candidates. Table 17 presents information collected for each facility in the study. Table 18 summarizes the results of the laboratory analyses of F006 data and Table 19 presents detailed laboratory analysis results for each facility.

The 10 Phoenix facilities generate approximate 1428 tons of F006 per year. Eight facilities recycle their waste and two facilities send their waste to be landfilled. Fifteen F006 laboratory samples were gathered.

|                                                                                                                                                                                                                                       | Table 16: Phoenix Metal Finishing Facility Selection Matrix |                                                     |                                                 |                                                                                       |                                         |                                                                      |                                                              |                                                   |                                                              |                                                  |                                                        |                                  |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|----------------------------------|-------------------------------|
| Selection Criteria                                                                                                                                                                                                                    | P 1                                                         | P 2                                                 | P 3                                             | P 4                                                                                   | P 5                                     | P 6                                                                  | P 7*                                                         | P8                                                | P 9                                                          | P 10                                             | P 11                                                   | P 12*                            | P13                           |
| Status                                                                                                                                                                                                                                | Selected                                                    | Selected                                            | Selected                                        | Selected                                                                              | Selected                                | Selected                                                             | Alternate                                                    | Selected                                          | Selected                                                     | Eliminated                                       | Selecte<br>d                                           | Alternate                        | Selected                      |
| Type: Captive/Job                                                                                                                                                                                                                     | Captive                                                     | Job                                                 | Job                                             | Captive                                                                               | Captive                                 | Job                                                                  | Job                                                          | Job                                               | Captive                                                      | Job                                              | Job                                                    | Job                              | Captive                       |
| Size                                                                                                                                                                                                                                  | 35                                                          | 200                                                 | 75                                              | 10                                                                                    | 24                                      | 175                                                                  | 105                                                          | 150                                               | 75-100                                                       | 165                                              | 47                                                     | 450                              | 70                            |
| Treatment Technology                                                                                                                                                                                                                  | CFR, IX,<br>Diagn.                                          | IX, CFR                                             | CFR, IX,<br>RO                                  | CFR, ED                                                                               | CFR,<br>DOR                             | CFR                                                                  | IX for Ag                                                    | CF2,<br>DOR                                       | IX, MS                                                       | CFR, MS,<br>FM                                   | CFR, IX                                                | IX, MS                           | ER                            |
| Onsite Recycle                                                                                                                                                                                                                        | water                                                       | water<br>reuse                                      | No                                              | No                                                                                    | No                                      | Off-spec<br>process<br>foil                                          | No                                                           | No                                                | water                                                        | No                                               | IX closed<br>loop                                      | Cu-<br>bearing<br>from IX;<br>EW | water in<br>drag-out<br>tanks |
| Landfill                                                                                                                                                                                                                              | No                                                          | No                                                  | No                                              | Yes                                                                                   | Yes                                     | No                                                                   | No                                                           | No                                                | No                                                           | No                                               | No                                                     | No                               | No                            |
| Main Mgmt. Method                                                                                                                                                                                                                     | Filter Press                                                | Filter<br>Press                                     | Filter<br>Press                                 | Filter Press                                                                          | Filter<br>Press                         | Filter<br>Press;<br>Drier (not<br>in use)                            | Filter Press                                                 | Filter<br>Press                                   | Filter<br>Press                                              | Filter<br>Press                                  | Filter<br>Press                                        | Filter<br>Press                  | Filter<br>Press               |
| Finishing Processes                                                                                                                                                                                                                   | Cu, Ni, Au,<br>Tin                                          | Cr Cu-CN<br>Cd-CN<br>Anodiz,<br>Phosphat.<br>CC, Ni | Cu, Ag,<br>Cr, E-Ni,<br>Anodiz,<br>Cu/Ag/<br>Ni | Cu-CN, Cu<br>strip,<br>Etching, E-<br>Ni, Ni                                          | Cr, Ag,<br>Ni, Cu on<br>steel/Ni/<br>Cr | Cu-foil,<br>hard CR<br>plating,<br>brass-CN<br>(produces<br>Cu-foil) | Anodize,<br>Chem-<br>Film-Cr on<br>Ti, Al, Fe,<br>Cr, Ag, Ni | E-Cu;<br>Cu; black<br>oxide;<br>Au-CN;<br>Ni      | Cu/Ag/<br>Ni                                                 | Cu, Tin,<br>Tin-Pb,<br>Ni, Au-<br>CN             | Acid-Cu,<br>Tin, Tin-<br>Pb, Tin-<br>Ni, Ni-<br>Au(CN) | HCl-Cu<br>etching                | Acid-Cu,<br>Ni, Au-<br>CN     |
| * Facility operates<br><u>Key:</u><br><u>MS</u> Material Substit<br>Alk/PPT Alkaline precipi<br>IX Ion exchanges<br>Ultra Ultrafiltration/N<br>CFR Counterflow rir<br>EMR Electrolytic met<br>ED Electrodialysis<br>RO Reverse osmosi | tution<br>itation<br>Aicrofiltration<br>Ise<br>Ial recovery | er and not an e                                     | E<br>F<br>D<br>C<br>N<br>A<br>E                 | R Electro<br>M Flow M<br>OR Drag-C<br>C Chrom<br>i Nickel<br>u Gold el<br>-Ni Electro | winning                                 | ectroplating                                                         |                                                              | Cu/Ni/Cr C<br>Cu C<br>HCr H<br>Cu-CN C<br>Cd-CN C | opper nickel<br>opper/PC bar<br>ard chromiur<br>opper cyanid | n on steel<br>e electroplatin<br>iide electropla | nonferrous                                             |                                  |                               |

| Table 17: Faci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 17: Facility-Specific Information for Phoenix Facilities<br>Facility P1                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Process F006 Quantity and Management Sample Description                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Acid Cu Electroless Ni<br>Au-CN Electroless Cu<br>Tin-Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~445 tons/yr<br>Recycle (World Resources)                                                                                                                                                                                                                                                                                                 | $\underline{P1-01}$ - collected from roll-off,<br>includes sludge generated from<br>separate alkaline etch batch<br>treatment press<br>$\underline{P1-02}$ - composite of sludge<br>collected from two roll-offs<br>containing sludge.                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           | Sample Charac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | teristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| SPENT PLATING SOLUTIONS<br>Filtration<br>Carbon treatment<br>Bath replenishment<br>Purified water - utilize Reverse Osmo<br>(EDR)<br>Electrolytic dummying<br>Monitoring - 90% of baths changed v<br>feed/bleed<br>Housekeeping via checklists<br>Drag-in reduction - drip boards/rack of<br>Purer anodes and bags - currently usi<br>Facility has explored electrowinning of<br>Solvent degreasing alternatives - curr<br><u>DRAG-OUT REDUCTION/RECOV</u><br>Wetting agents - contained in some of<br>Workpiece positioning - some racks s<br>Withdrawal and drainage time - incre<br>Spray or fog rinses - all horizontal eq<br>Drainage boards - automated line equ<br>w/racks<br>Drag-out tanks - replenish baths with<br>Replenish plating baths with drag-out<br><u>RINSEWATER</u><br>Spray rinse/rinse water agitation - air<br>Increased contact time/multiple rinses<br>Countercurrent rinsing<br>Flow restrictors - horizontal flow sen<br>Conductivity-actuated flow control - 1<br>Recycling of rinse water via a closed | prientation<br>ng purest level per specifications<br>Cu<br>ently use alkaline/aqueous<br><u>ERY</u><br>nemistries<br>et at angle<br>ased hang time<br>uipment<br>ipped w/drainage boards that move<br>drag-out tanks<br>tanks<br>agitation in most cases<br>sors - flow restrictors on most rinses<br>inse after micro-etch on oxide line | P1 - 01           Total (mg/kg)           A1 - 3,420           Sb - ND           As - 2           Ba - 6           Bi - ND           Cd - ND           Ca - 15,100           Cr - 10           Hex. Cr - ND           Cu - 7,690           Fe - 5,050           Pb - 2,590           Mg - 319,000           Mn - 101           Hg - ND           Ni - 3,080           Se - ND           Ag - 8           Na - 4,050           Sn - 2,370           Zn - 57           CN - ND           TCLP (mg/l)           As - ND           Ba - ND           Cd - ND           Cr - ND           Pb - 0.12           Hg - ND           Se - ND | P1 - 02         Total (mg/kg)         A1 - 44,700         Sb - ND         As - 8         Ba - 22         Bi - ND         Cd - ND         Ca - 15,300         Cr - 23         Hex. Cr - ND         Cu - 28,100         Fe - 4,020         Pb - 194         Mg - 245,000         Mn - 288         Hg - ND         Ni - 4,450         Se - ND         Ag - 22         Na - 4,780         Sn - 1,7110         Zn - 190         CN - ND         TCLP (mg/l)         As - ND         Ba - ND         Cd - ND         Cr - ND         Pb - 0.08         Hg - ND         Se - ND |  |  |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix FacilitiesFacility P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Hard chromeZincSulfuric acidphosphatinganodizingManganesechromic AcidphosphatinganodizingChromateHard anodizingconversionElectroless NicoatingsSulfamate NipassivationCd-CNCu-CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~40 tons/yr<br>Recycle (World Resources)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>P2-01</u> - collected directly from roll-<br>off, brownish-green mixed with a<br>white and green layer                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| SPENT PLATING SOLUTIONSFiltration - seals, anodize, sulfamate/elCarbon Treatment on CN rinses, periodReplenishment - process tanks have drCr, anodizePurified Water - RO/DI, not all rinse taElectrolytic Dummying - Woods Ni, stplate, CuPrecipitation - hard Cr - BaCl2 precipiMonitoring - wet lab/computerized cleDrag-in Reduction - training on rinsingPurer Anodes and Bags - already emplVentilation/Exhaust Systems - Cr scrulSolvent Degreasing Alternatives - useperchloroethylene, but instead a bromitAcid Purification - chromic acid purificsystemDRAG-OUT REDUCTION/RECOVEProcess Bath Operating Concentrationbeen looked at to reduce drag-out - limWorkpiece positioning - rackingWithdrawal and Drainage Time - spraySpray or Fog Rinses over drag-out tanlSpent Plating Solutions - ReplenishmeRINSE WATERSpray Rinse/RinseWater Agitation - aiIncreased Contact Time/Multiple RinseCountercurrent RinsingFlow Restrictors in all casesConductivity-Actuated Flow Control - controlled via labRinse Water - recycling/recovery of CI | dically on sulfamate nickel<br>ag-out w/ replenishment of Cd, Cu,<br>anks use purified water<br>rike, sulfamate Ni, Cr anodize, Cr<br>tates sulfate<br>aners-chronological<br>g, minimum of 2 counterflow rinses<br>oyed (Cd 99.999%) - all highest grade<br>bber reused for evaporation losses<br>vapor degreaser - not using<br>nated solvent<br>cation (hard chrome). Uses EcoTech<br>ERY<br>- chromic acid concentrations have<br>itations due to specs<br>ving over bath<br>ks<br>nt<br>r agitation in some tanks<br>es<br>all rinses are conductivity/pH | P2 - 01 $Total (mg/kg)$ $TCLP (mg/l)$ Al -72,300       As - ND         Sb - ND       Ba - ND         As - 12       Cd - ND         Ba - 67       Cr - 0.1         Bi - 71       Pb - 0.12         Cd - 77       Hg - ND         Ca - 15,800       Se - ND         Cr - 25,700       Ag - ND         Hex. Cr - 5       Cu -2,660         Fe - 13,600       Pb - 1,160         Mg - 198,000       Mn - 116         Hg - 0.3       Ni - 4,480         Se - ND       Ag -7         Na - 15,800       Sn - 171         Zn - 251       CN - ND |  |  |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix FacilitiesFacility P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Descript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Hard chromeSulfamate NiCu-CNElectroless NiAg-CNBright NiSulfuric anodizingChrome anodizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37 tons/yr<br>Recycle (Word Resources)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>P3-01</u> - taken from roll-off, blue-<br>greenish color<br><u>P3-02</u> - taken from same roll-off,<br>sample collected from obviously<br>different press load - brownish-gree<br>in color                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| SPENT PLATING SOLUTIONSFiltration on all process tanksCarbon treatment used in regular filterReplenishmentPurified water - RO/DIElectrolytic Dummying - Ag/Nickel baCyanide Bath Carbonate Freezing - prePrecipitation - precipitate Al out of andMonitoring - most tanks weekly - eitherreplacementsHousekeeping - tank covers, clean anoDrag-in Reduction - Counter Flow rinsPurer Anodes and Bags - already usingHexavalent Chrome Alternatives - MIINon-cyanide Process Chemicals - MIIredo permit to use these chemistriesSolvent Degreasing Alternatives - used(perchloroethylene) switched ~1995 toAlkaline Cleaners - skimming on semitAcid Purification - chrome baths - conare "dead" and are diluted by half andevaporated to working concentration (orDRAG-OUT REDUCTION/RECOVIWetting Agents - some tanks have agecontrol)Workpiece Positioning - incorporatedthrowing power)Withdrawal and Drainage Time - operSpray or Fog Rinses in chrome baths -Drag-out Tanks - Ag tanks, chromic arreplenish bathRINSE WATERSpray Rinse/Rinse Water Agitation - sIncreased Contact Time/Multiple RinsCountercurrent Rinsing | aths<br>ecipitate AgCN from bath<br>odize bath<br>er scheduled or monitored<br>de/cathode bars<br>ses<br>g high purity Ni/Cu/Ag<br>LSPEC, etc. limits options<br>LSPEC limitations, also would need to<br>d to use Vapor degreaser<br>o aqueous-based<br>-aqueous cleaners (alkaline based)<br>stant ion exchange, after 8 days, baths<br>run through ion exchange, then<br>can recover ~98% of original bath)<br><u>ERY</u><br>nts (Cu, Ni, fume suppressant-mist<br>(optimization between drag-out and<br>ator subjective (training)<br>RO water spray<br>nodize, 3 rinse on chrome tank, | <b>P3 - 01</b> Total (mg/kg)         Al - 76,100         Sb - ND         As - 11         Ba - 686         Bi - 19         Cd - 5         Ca - 35,300         Cr - 205,000         Hex. Cr - 8         Cu - 5,670         Fe - 6,450         Pb - 191         Mg - 15,500         Mn - 183         Hg - ND         Ni - 4,400         Se - ND         Ag -23         Na - 15,600         Sn - 382         Zn - 7,390         CN - 2.4         TCLP (mg/l)         As - ND         Ba - ND         Cd - ND         Cr - 0.92         Pb - 0.06         Hg - 0.003         Se - ND         Ag - ND | P3 - 02         Total (mg/kg)         Al - 74,500         Sb - ND         As - 12         Ba - 371         Bi - 29         Cd - 30         Ca - 63,300         Cr - 118,000         Hex. Cr - 11         Cu - 11,500         Fe - 7,990         Pb - 500         Mg - 30,300         Mn - 184         Hg - ND         Ni - 4,390         Se - ND         Ag - 1,190         Na - 19,800         Sn - 182         Zn - 29,100         CN - 579         TCLP (mg/l)         As - ND         Ba - ND         Cd - 0.02         Cr - 0.56         Pb -ND         Hg - ND         Se - ND         Ag - ND         Ag - ND |  |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix FacilitiesFacility P4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F006 Quantity and Management                                                                                                                          | Sample Description                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |  |  |
| Ni-Cr on steel<br>Hard chrome on steel<br>Cu-CN<br>Sulfuric acid anodizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85 tons/yr<br>Subtitle C Landfill                                                                                                                     | <u>P4-01</u> - collected directly from roll off, reddish-brown in color                                                                                                                                                                                                                                                                                                    |                                                                                                     |  |  |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       | Sample Characte                                                                                                                                                                                                                                                                                                                                                            | eristics (Dry wt.)                                                                                  |  |  |  |  |
| SPENT PLATING SOLUTIONS<br>Replenishment on all tanks<br>Purified Water - DI water<br>Electrolytic Dummying - hard chrome<br>Monitoring once a week<br>Housekeeping - training for drag-out, a<br>Ventilation/Exhaust Systems<br>Nonchelated Process Chemistries - seg<br>investigated material substitutions<br>Solvent Degreasing Alternatives - all c<br><u>DRAG-OUT REDUCTION/RECOVI</u><br>Wetting Agents - exploring with vendo<br>Workpiece Positioning<br>Withdrawal and Drainage Time - proce<br>Drainage boards and drag-out tanks<br>Drag-out used as make-up in baths<br><u>RINSE WATER</u><br>Spray Rinse/Rinse Water Agitation - a<br>Increased Contact Time/Multiple Rinse<br>Countercurrent Rinsing<br>Rinse Water - counterflow recycling/rec<br>Spent Process Baths - a portion of FeC<br>flocculation | air drying<br>gregate chelating chemistries,<br>eleaning is aqueous based<br><u>ERY</u><br>or<br>edures set guideline<br>ir and water agitation<br>es | $\begin{array}{l} \textbf{P4-01} \\ \hline \underline{Total} \ (mg/kg) \\ Al - 2,180 \\ Sb - ND \\ As - 10 \\ Ba - 49 \\ Bi - ND \\ Cd - ND \\ Ca - 15,700 \\ Cr - 5,680 \\ Hex. Cr - 75 \\ Cu - 417 \\ Fe - 560,000 \\ Pb - 80 \\ Mg - 6,310 \\ Mn - 2,070 \\ Hg - ND \\ Ni - 1,530 \\ Se - ND \\ Ag - ND \\ Na - 6,700 \\ Sn - 38 \\ Zn - 258 \\ CN - ND \\ \end{array}$ | TCLP (mg/l)<br>As - ND<br>Ba - ND<br>Cd - ND<br>Cr - ND<br>Pb - ND<br>Hg - ND<br>Se - ND<br>Ag - ND |  |  |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix FacilitiesFacility P5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F006 Quantity and Management Sample Description                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |  |  |  |
| Hard chrome Sulfamate Ni<br>Cu-CN Ag-CN<br>Aluminum anodizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>P5-01</u> - composited a variety of<br>different press loads into a single<br>sample, colors ranged from dark<br>brown to light brown to greenish-<br>brown                                                                   |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |  |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | Sample Characte                                                                                                                                                                                                                                                                                                                                                            | eristics (Dry wt.)                                                                                           |  |  |  |
| SPENT PLATING SOLUTIONS<br>Filtration of most baths<br>Replenishment of most baths<br>Purified Water - RO/DI<br>Electrolytic Dummying - hard chrome<br>Cyanide Bath Carbonate Freezing for a<br>Monitoring - wet chemistry - all chang<br>Housekeeping - designated bath maint<br>Ventilation/Exhaust Systems - scrubbe<br>Nonchelated Process Chemistries - seg<br>Solvent Degreasing Alternatives - all c<br>Alkaline Cleaners - coalesce/disk filter<br>DRAG-OUT REDUCTION/RECOVI<br>Wetting Agents<br>Workpiece positioning<br>Withdrawal and Drainage Time - SOP<br>Air Knives - some used for drying<br>Spray or Fog Rinses - some drag-out ta<br>Drainage boards and drag-out tanks<br>Sent back for replenishment of plating<br>RINSE WATER<br>Spray Rinse/Rinse Water Agitation - a<br>Increased Contact Time/Multiple Rins<br>Countercurrent Rinsing<br>Flow restrictors set at 5 gpm (timed)<br>Spent Process Baths - copper alkaline<br>smelter<br>Solvents - oil based wax removal sent | es are based on testing<br>enance person<br>ers segregated as well<br>gregated (electroless Ni)<br>eleaning aqueous based<br>to remove contaminants<br><u>ERY</u><br>''s<br>anks have spray rinse<br>baths<br>ir agitation<br>es | $\begin{array}{l} \textbf{P5 - 01} \\ \hline Total (mg/kg) \\ Al - 2,270 \\ Sb - ND \\ As - 160 \\ Ba - 387 \\ Bi - ND \\ Cd - 806 \\ Ca - 29,300 \\ Cr - 206,000 \\ Hex. Cr - 77 \\ Cu - 23,500 \\ Fe - 35,200 \\ Pb - 377 \\ Mg - 31,300 \\ Mn - 556 \\ Hg - ND \\ Ni - 10,300 \\ Se - ND \\ Ag - 457 \\ Na - 15,300 \\ Sn - 546 \\ Zn - 291 \\ CN - 102 \\ \end{array}$ | <u>TCLP</u> (mg/l)<br>As - ND<br>Ba - ND<br>Cd - ND<br>Cr - 1.06<br>Pb - ND<br>Hg - ND<br>Se - ND<br>Ag - ND |  |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix FacilitiesFacility P6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F006 Quantity and Management              | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Cu sulfate<br>Hard chrome<br>Cyanide-based brass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~590 tons/yr<br>Recycle (World Resources) | P6-01 - "fresh" sludge sample fro<br>roll-off currently in use(sludge<br>dropped that day), sludge was a<br>mixture of bluish and dark brown<br>P6-02 - "old" sludge from hopper<br>accumulated the previous week,<br>appeared brownish                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | teristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Pollution Prevention Practices         SPENT PLATING SOLUTIONS         Filtration on all baths - cartridge, bags, and diatomaceous earth filters         Carbon Treatment - electroforming         Replenishment - continuous circulation         Purified Water - RO         Monitoring - on-line XRF, wet lab         Drag-in Reduction - multiple rinses, squeegees         Ventilation/Exhaust Systems         Non-cyanide Process Chemicals - looking at material substitutions         Caustic Etch Solution Regeneration - plate-out removes all copper         Acid Purification - filtration         DRAG-OUT REDUCTION/RECOVERY         Spray or Fog Rinses - some replenish to prior tank         All Drag-Out to Waste Water Treatment         PINSE WATEB         Spray Rinse/Rinse Water Agitation         Increased Contact Time/Multiple Rinses         Flow Restrictors - some used but operators can adjust flow manually         Conductivity-Actuated Flow Control         Spent Process Baths - Recycling/Recovery of electroforming bath - Solvent         Extraction of copper off-site |                                           | P6 - 01 $Total$ (mg/kg)         Al - 511         Sb - 221         As - 8,780         Ba - 67         Bi - ND         Cd -3         Ca -1,440         Cr -10,000         Hex. Cr - 548         Cu -552,000         Fe - 6,650         Pb - 19,800         Mg - 1,320         Mn - 72         Hg - ND         Ni - 99         Se - ND         Ag -3         Na - 60         Sn - 3,570         Zn - 31,600         CN - 169         TCLP (mg/l)         As - ND         Ba - ND         Cd - 0.02         Cr - ND         Pb - 35.40         Hg - ND         Se - ND         Ag - ND | P6 - 02 $Total (mg/kg)$ Al - 233         Sb - 153         As - 5,600         Ba - 11         Bi - ND         Cd - ND         Ca - 1,980         Cr - 7,820         Hex. Cr - 466         Cu - 463,000         Fe - 2,670         Pb - 14,800         Mg - 1,590         Mn - 24         Hg - ND         Ni - 51         Se - ND         Ag - ND         Na - 25         Sn - 3,850         Zn - 24,600         CN - 127         TCLP (mg/l)         As - ND         Ba - ND         Cd - 0.03         Cr - ND         Pb - 39.80         Hg - ND         Se - ND         Ag - ND |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix FacilitiesFacility P8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                         | Sample Description                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |  |  |
| Electroless Cu Acid Cu<br>Ni sulfamate Au-CN<br>Tin-lead-copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64 tons/yr<br>Recycle (World Resources)                                                                                                                                                                                                                                                                                                                              | <u>P8-01</u> - sample collected directly from hopper, appeared brownish color and was dropped that day                                                                                                                                                                                                                                                                                                  |                                                                                                                 |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                      | Sample Characte                                                                                                                                                                                                                                                                                                                                                                                         | eristics (Dry wt.)                                                                                              |  |  |
| SPENT PLATING SOLUTIONSFiltration on acid Cu, Au, Ni, black oxCarbon Treatment on acid Cu/Sn-Pb/APurified Water - RO/UV/ion exchangeElectrolytic Dummying - acid Cu primMonitoring - lab does chemical maintemonitors)Housekeeping - drip trays, daily inspecDrag-in Reduction - manual lines - traiVentilation/Exhaust Systems - fume scthat are heatedAlkaline cleaners - Filtration and SkimDRAG-OUT REDUCTION/RECOVEProcess Bath Operating ConcentrationProcess Bath Operating Temperature -Air Knives and squeegee rollersSpray or Fog RinsesDrainage Boards - drip pads between tDrag-Out TanksRINSE WATERSpray Rinse/Rinse Water Agitation - aiCountercurrent Rinsing - used in all prFlow restrictors isolated and operator cSpent Process Baths - ammonium hydr | <ul> <li>Ni</li> <li>incoming water<br/>arily (Sn)</li> <li>nance - computer controlled (staff</li> <li>etion</li> <li>ning</li> <li>rubbers on roof, ventilation on tanks</li> <li>ming</li> <li>ERY</li> <li>standard and well addressed<br/>already optimized</li> <li>anks</li> <li>ir agitation on a few tanks</li> <li>occesses</li> <li>controlled</li> </ul> | $\begin{array}{l} \textbf{P8 - 01} \\ \hline \underline{Total} \ (mg/kg) \\ Al - 60,800 \\ Sb - ND \\ As - 3 \\ Ba - 125 \\ Bi - ND \\ Cd - ND \\ Cd - ND \\ Cd - ND \\ Ca - 9,710 \\ Cr - 248 \\ Hex. Cr - ND \\ Cu - 124,000 \\ Fe - 50,900 \\ Pb - 3,610 \\ Mg - 6,620 \\ Mn - 496 \\ Hg - 0.3 \\ Ni - 2,900 \\ Se - ND \\ Ag - 835 \\ Na - 2,050 \\ Sn - 14,700 \\ Zn - 782 \\ CN - ND \end{array}$ | <u>TCLP</u> (mg/l)<br>As - ND<br>Ba - 1.5<br>Cd - ND<br>Cr - 0.02<br>Pb - 0.64<br>Hg - ND<br>Se - ND<br>Ag - ND |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix FacilitiesFacility P9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F006 Quantity and Management                                                                                                                                                                                                                                                                                                                                                             | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Copper sulfate<br>Nickel sulfate<br>Au immersion (CN)<br>Tin<br>Electrolytic Au (CN )<br>Electroless nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>P9-01</u> - chelate sludge sampled<br>directly from small hopper prior to<br>moving to final storage roll-off<br>where commingled with non-chelate<br>sludge<br><u>P9-02</u> - non-chelate sludge sampled<br>directly from final storage hopper<br>avoiding chelate sludge (some minor<br>mixing of the two occurred)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                          | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| SPENT PLATING SOLUTIONS<br>Particulate filtration<br>Carbon treatment<br>Replenishment<br>Purified Water - RO/DI<br>Electrolytic Dummying - Ni/Cu<br>Monitoring - AA testing, titrations, and<br>Housekeeping<br>Drag-in Reduction<br>Purer Anodes and Bags are already imp<br>Ventilation/Exhaust Systems<br>Nonchelated Process Chemistries - che<br>Solvent Degreasing Alternatives - rem<br>Caustic Etch Solution Regeneration - C<br>siteDRAG-OUT REDUCTION/RECOVE<br>Process Bath Operating Concentration<br>Process Bath Operating Temperature<br>Wetting Agents - Ni and Cu bath<br>Workpiece Positioning - looking at pos<br>Withdrawal and Drainage Time - autor<br>and rate of removal<br>Air Knives and squeegees on conveyor<br>Spray or Fog Rinses<br>Drainage Boards - used some in electro<br>Drag-Out Tanks<br>Evaporation - Ni drag-out replenishedRINSE WATER<br>Spray Rinse/Rinse Water Agitation<br>Increased Contact Time/Multiple Rinse<br>Countercurrent Rinsing<br>Flow Restrictors<br>Conductivity-Actuated Flow Control -<br>Rinse Water - approximately 30 to 359<br>Spent Process Baths - Au recovered or | elemented (function of industry)<br>elating chemistries are segregated<br>oved vapor degreaser<br>Cu Ammonium chlorite recycled off<br>ERY<br>- optimized<br>- optimized<br>sitioning sheets at 10° drip angle<br>matic lines are programmed with dwell<br>rs<br>olytic gold and used in conveyors<br>to Ni plate bath<br>es<br>used on large Cu-Tin line<br>6 of total flow is recycled | $\begin{array}{l} \textbf{P9-01} \\ \hline \underline{Total} \ (mg/kg) \\ Al - 4,110 \\ Sb - 44 \\ As - 26 \\ Ba - 40 \\ Bi - 21 \\ Cd - ND \\ Ca - 6,880 \\ Cr - 100 \\ Hex. Cr - ND \\ Cu - 48,700 \\ Fe - 204,000 \\ Pb - 1,660 \\ Mg - 10,700 \\ Mn - 191 \\ Hg - ND \\ Ni - 1,990 \\ Se - ND \\ Ag - 38 \\ Na - 36,900 \\ Sn - 37,200 \\ Zn - 389 \\ CN - 9.1 \\ \hline \underline{TCLP} \ (mg/l) \\ As - ND \\ Ba - ND \\ Cd - ND \\ Cr - ND \\ Pb - ND \\ Hg - ND \\ Se - ND \\ Ag - ND \\ Se - ND \\ Ag - ND \\ Cd - ND \\ Cr - ND \\ Pb - ND \\ Hg - ND \\ Ag - ND \\ Se - ND \\ Ag - ND \\ Ag - ND \\ Hg - ND \\ Hg - ND \\ Ag - ND \\ Ag - ND \\ Hg - ND \\ Ag - ND \\ Ag$ | P9 - 02         Total (mg/kg)         Al - 59         Sb - ND         As - 9         Ba - 9         Bi - ND         Cd - ND         Ca - 682         Cr - 34         Hex. Cr - 31         Cu - 631,000         Fe - 364         Pb - ND         Mg - 230         Mn - 104         Hg - ND         Ni - 10,800         Se - ND         Ag - 12         Na - 41,600         Sn - 402         Zn - 2.750         CN - ND         TCLP (mg/l)         As - ND         Ba - ND         Cd - ND         Pb - 0.08         Hg - ND         Se - ND         Ag - ND |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix Facilities         Facility P11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F006 Quantity and Management                                                                                                                                                             | Sample Description                                                                                                                                                                                                                                                          |  |  |
| Acid Cu Ni sulfate<br>Tin-Pb Acid Tin<br>Au -CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~4 tons/yr<br>Recycle (World Resources)                                                                                                                                                  | <u>P11-01</u> - sludge from supersack                                                                                                                                                                                                                                       |  |  |
| Pollution Prevention Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                          | Sample Characteristics (Dry wt.)                                                                                                                                                                                                                                            |  |  |
| SPENT PLATING SOLUTIONS<br>Filtration on all process baths<br>Carbon treatment on acid-Cu quarterly<br>Replenishment of baths with drag-out<br>Purified water - use deionized water<br>Electrolytic dummying periodically<br>Monitoring via wet lab (pH, titration);<br>Drag-in reduction - drain times/dwell t<br>Segregate chelating process chemistrie<br>by-batch basis)<br>Solvent degreasing alternatives - all ch<br>Alkaline cleaners - resist strip is filtered<br>DRAG-OUT REDUCTION/RECOVI<br>Workpiece positioning - racks are coat<br>Optimize withdrawal and drainage tim<br>Use squirt bottles for rinsing Au/Ni so<br>Utilize Drag-out tanks<br>Some drag-out tanks are used to repler<br>RINSE WATER<br>Spray rinse/rinse water agitation<br>Increased contact time/multiple rinses<br>Countercurrent rinsing<br>Flow restrictors<br>Conductivity-actuated flow control<br>Recycling/recovery of rinse water - clo | baths replaced based on sq. ft. plated<br>imes<br>s (magnesium sulfate used on a batch-<br>eaners are aqueous-based<br>d<br>ERY<br>ed<br>e<br>lution back into bath<br>hot plating baths | P11 - 01 $Total (mg/kg)$ $TCLP (mg/l)$ Al - 819As - NDSb - NDBa - NDAs - NDCd - NDBa - 17Cr - NDBi - NDPb - 0.13Cd - NDHg - NDCa - 11,400Se - NDCr - 119Ag - NDHex. Cr - NDBu - 72,600Mg - 72,600Mg - 72,600Mg - 13,400Se - NDAg - 14Na - 13,400Sn - 131,000Zn - 820CN - ND |  |  |

| Table 17 (cont'd): Facility-Specific Information for Phoenix Facilities<br>Facility P13                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Plating Process                                                                                                                                                                                                                                                                         | F006 Quantity and Management                                                                                                                                                                                                                            | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Copper (CN) Au-CN<br>Ni                                                                                                                                                                                                                                                                 | ~4 tons/yr<br>Recycle (World Resources)                                                                                                                                                                                                                 | P13-01 - "old" sample collected<br>from top of superbag, appeared<br>and dense<br>P13-02 - "fresh" sample collect<br>directly from small hopper und<br>filter press                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| <b>Pollution Prevention Practices</b>                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         | Sample Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eristics (Dry wt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| are left to sit ~10 minutes)<br>Spray or Fog Rinses - stagnant spray r<br>Drag-Out Tanks<br>Electrowinning - Ni, Cu<br><u>RINSE WATER</u><br>Spray Rinse/RinseWater Agitation - ai<br>Increased Contact Time/Multiple Rins<br>Countercurrent Rinsing<br>Flow Restrictors - spray rinses | ered at end of the day and also replace<br>double dipping<br>actrowinning helps, and add reducing<br>ERY<br>new racks<br>ect to plater on manual lines (Au racks<br>inses (with water)<br>ar agitation<br>es<br>conductivity meters, but not controlled | P13 - 01         Total (mg/kg)         Al - 1,370         Sb - 34,800         As - ND         Ba - 253         Bi - 398         Cd - ND         Ca - 2,690         Cr - 29         Hex. Cr - ND         Cu -3,660         Fe - 3,500         Pb - 175,000         Mg - 187         Mn - 13         Hg - 0.5         Ni - 2,420         Se - ND         Ag - 113         Na - 310         Sn - 467,000         Zn - 672         CN - ND         TCLP (mg/l)         As - ND         Ba - ND         Cd - 0.1         Cr - ND         Pb - 1,630         Hg - ND         Se - ND         Ag - ND | P13 - 02 $Total$ (mg/kg)         Al - 2,860         Sb - 1,250         As - 10         Ba - 198         Bi - 32         Cd - 3         Ca - 143,000         Cr - 170         Hex. Cr - ND         Cu - 6,430         Fe - 17,100         Pb - 13,000         Mg - 2,640         Mn - 92         Hg - 0.4         Ni - 71,900         Se - ND         Ag - 40         Na - 5,660         Sn - 15,300         Zn - 357         CN - ND         TCLP (mg/l)         As - ND         Ba - ND         Cd - ND         Pb - 1.26         Hg - ND         Se - ND         Ag - ND |  |  |

| Constituent                    | # Samples<br>(%) | # Non Detects<br>(%) | # Samples Above<br>Method Quantitation<br>Limit (%) |
|--------------------------------|------------------|----------------------|-----------------------------------------------------|
| <b>Total Metals Concentrat</b> | ion (mg/kg)      |                      |                                                     |
| Aluminum                       | 15               | 0(0%)                | 15(100%)                                            |
| Antimony                       | 15               | 10(67%)              | 5(33%)                                              |
| Arsenic                        | 15               | 2(13%)               | 13(87%)                                             |
| Barium                         | 15               | 0(0%)                | 15(100%)                                            |
| Beryllium                      | 0                | 0                    | 0                                                   |
| Bismuth                        | 15               | 9(60%)               | 6(40%)                                              |
| Cadmium                        | 15               | 9(60%)               | 6(40%)                                              |
| Calcium                        | 15               | 0(0%)                | 15(100%)                                            |
| Chromium                       | 15               | 0(0%)                | 15(100%)                                            |
| Copper                         | 15               | 0(0%)                | 15(100%)                                            |
| Iron                           | 15               | 0(0%)                | 15(100%)                                            |
| Lead                           | 15               | 1(7%)                | 14(93%)                                             |
| Magnesium                      | 15               | 0(0%)                | 15(100%)                                            |
| Manganese                      | 15               | 0(0%)                | 15(100%)                                            |
| Mercury                        | 15               | 11(73%)              | 4(27%)                                              |
| Nickel                         | 15               | 0(0%)                | 15(100%)                                            |
| Selenium                       | 0                | 0                    | 0                                                   |
| Silver                         | 15               | 2(13%)               | 13(87%)                                             |
| Sodium                         | 15               | 0(0%)                | 15(100%)                                            |
| Tin                            | 15               | 0(0%)                | 15(100%)                                            |
| Zinc                           | 15               | 0(0%)                | 15(100%)                                            |
| TCLP (mg/l)                    |                  | × /                  | · · · /                                             |
| Arsenic                        | 0                | 0                    | 0                                                   |
| Barium                         | 8                | 7(87%)               | 1(13%)                                              |
| Cadmium                        | 15               | 11(73%)              | 4(27%)                                              |
| Chromium                       | 15               | 10(67%)              | 5(33%)                                              |
| Lead                           | 15               | 4(27%)               | 11(73%)                                             |
| Mercury                        | 7                | 6(86%)               | 1(14%)                                              |
| Selenium                       | 0                | 0                    | 0                                                   |
| Silver                         | 0                | 0                    | 0                                                   |
| General Chemistry (mg/         | kg)              | 1                    | 1                                                   |
| Chloride                       | 15               | 0(0%)                | 15(100%)                                            |
| Fluoride                       | 15               | 1(7%)                | 14(93%)                                             |
| Chromium, hexavalent           | 15               | 7(46%)               | 8(54%)                                              |
| Total Cyanide                  | 15               | 8(54%)               | 7(46%)                                              |
| Amenable Cyanide               | 15               | 1(7%)                | 14(93%)                                             |
| Percent Solids                 | 15               | 0(0%)                | 15(100%)                                            |

| Та             | Table 19: Detailed Analytical Data for the Phoenix Facilities |             |              |              |             |           |         |         |
|----------------|---------------------------------------------------------------|-------------|--------------|--------------|-------------|-----------|---------|---------|
| Constituent    | CAS No.                                                       | P1-01       | P1-02        | P2-01        | P3-01       | P3-02     | P4-01   | P5-01   |
|                | Total Meta                                                    | als - Metho | ods 6010A, 7 | 471A, 706    | 0A, 7421, 7 | 7740 mg/l | cg      |         |
| Aluminum       | 7429905                                                       | 3,420       | 44,700       | 72,300       | 76,100      | 74,500    | 2,180   | 2,270   |
| Antimony       | 7440360                                                       | ND          | ND           | ND           | ND          | ND        | ND      | NE      |
| Arsenic        | 7440382                                                       | 2           | 8            | 12           | 11          | 12        | 10      | 16      |
| Barium         | 7440393                                                       | 6           | 22           | 67           | 686         | 371       | 49      | 387     |
| Beryllium      | 7440417                                                       | ND          | ND           | ND           | ND          | ND        | ND      | NE      |
| Bismuth        | 7440699                                                       | ND          | ND           | 71           | 19          | 29        | ND      | NE      |
| Cadmium        | 7440439                                                       | ND          | ND           | 77           | 5           | 30        | ND      | 806     |
| Calcium        | 7440702                                                       | 15,100      | 15,300       | 15,800       | 35,300      | 63,300    | 15,700  | 29,300  |
| Chromium       | 7440473                                                       | 10          | 23           | 25,700       | 205,000     | 118,000   | 5,680   | 206,000 |
| Copper         | 7440508                                                       | 7,690       | 28,100       | 2,660        | 5,670       | 11,500    | 417     | 23,500  |
| Iron           | 7439896                                                       | 5,050       | 4,020        | 13,600       | 6,450       | 7,990     | 560,000 | 35,200  |
| Lead           | 7439921                                                       | 2,590       | 194          | 1,160        | 191         | 500       | 80      | 377     |
| Magnesium      | 7439954                                                       | 319,000     | 245,000      | 198,000      | 15,500      | 30,300    | 6,310   | 31,300  |
| Manganese      | 7439965                                                       | 101         | 288          | 116          | 183         | 184       | 2,070   | 550     |
| Mercury        | 7439976                                                       | ND          | ND           | 0.3          | ND          | ND        | ND      | NE      |
| Nickel         | 7440020                                                       | 3,080       | 4,450        | 4,480        | 4,400       | 4,390     | 1,530   | 10,30   |
| Selenium       | 7782492                                                       | ND          | ND           | ND           | ND          | ND        | ND      | NI      |
| Silver         | 7440224                                                       | 8           | 22           | 7            | 23          | 1,190     | ND      | 45      |
| Sodium         | 7440235                                                       | 4,050       | 4,780        | 15,800       | 15,600      | 19,800    | 6,700   | 15,300  |
| Tin            | 7440315                                                       | 2,370       | 1,710        | 171          | 382         | 182       | 38      | 540     |
| Zinc           | 7440666                                                       | 57          | 190          | 251          | 7,390       | 29,100    | 258     | 29      |
|                | TC                                                            | LP Metals   | - Methods 1  | 311, 60104   | A, 7470A n  | ng/L      |         |         |
| Arsenic        | 7440382                                                       | ND          | ND           | ND           | ND          | ND        | ND      | NI      |
| Cadmium        | 7440439                                                       | ND          | ND           | ND           | ND          | 0.02      | ND      | NI      |
| Chromium       | 7440473                                                       | ND          | ND           | 0.1          | 0.92        | 0.56      | ND      | 1.0     |
| Lead           | 7439921                                                       | 0.12        | 0.08         | 0.12         | 0.06        | ND        | ND      | NI      |
| Mercury        | 7439976                                                       | ND          | ND           | ND           | 0.003       | ND        | ND      | NI      |
| Selenium       | 7782492                                                       | ND          | ND           | ND           | ND          | ND        | ND      | NI      |
| Silver         | 7440224                                                       | ND          | ND           | ND           | ND          | ND        | ND      | NI      |
|                | General Che                                                   | emistry - N | Aethods 300  | .0, 335.2, 3 |             |           | g/kg    |         |
| Chloride       | 16887006                                                      | 542         | 3,950        | 451          | 430         | 566       | 8,120   | 4,79    |
| Fluoride       | 16984488                                                      | 49.5        | 804          | 782          | 3,090       | 4,240     | ND      | 16      |
| Hex. Chromium  | 18540299                                                      | ND          | ND           | 5            | 8           | 11        | 75      | 7       |
| Total Cyanide  | 57125                                                         | ND          | ND           | 1.1          | 2.4         | 579       | ND      | 10      |
| Amen. Cyanide  | E-10275                                                       | **13.3      | **89.7       | **8.4        | **7         | **809     | ND      | **15    |
| Percent Solids |                                                               | 60.1        | 30.1         | 27.3         | 27.8        | 20.9      | 28      | 28.     |
| **Repor        |                                                               |             |              |              |             |           |         |         |

| Т                                                                 | Table 19 (con't): Detailed Analytical Data for the Phoenix Facilities |              |               |           |            |          |         |         |         |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|---------------|-----------|------------|----------|---------|---------|---------|
| Constituent                                                       | CAS No.                                                               | P6-01        | P6-02         | P8-01     | P9-01      | P9-02    | P11-01  | P13-01  | P13-02  |
| Total Metals - Methods 6010A, 7471A, 7060A, 7421, 7740 mg/kg      |                                                                       |              |               |           |            |          |         |         |         |
| Aluminum                                                          | 7429905                                                               | 511          | 233           | 60,800    | 4,110      | 59       | 819     | 1,370   | 2,860   |
| Antimony                                                          | 7440360                                                               | 221          | 153           | ND        | 44         | ND       | ND      | 34,800  | 1,250   |
| Arsenic                                                           | 7440382                                                               | 8,780        | 5,600         | 3         | 26         | 9        | ND      | ND      | 1(      |
| Beryllium                                                         | 7440417                                                               | ND           | ND            | ND        | ND         | ND       | ND      | ND      | NE      |
| Barium                                                            | 7440393                                                               | 67           | 11            | 125       | 40         | 9        | 17      | 253     | 198     |
| Bismuth                                                           | 7440699                                                               | ND           | ND            | ND        | 21         | ND       | ND      | 398     | 32      |
| Cadmium                                                           | 7440439                                                               | 3            | ND            | ND        | ND         | ND       | ND      | ND      |         |
| Calcium                                                           | 7440702                                                               | 1,440        | 1,980         | 9,710     | 6,880      | 682      | 11,400  | 2,690   | 143,000 |
| Chromium                                                          | 7440473                                                               | 10,000       | 7,820         | 248       | 100        | 34       | 119     | 29      | 17(     |
| Copper                                                            | 7440508                                                               | 552,000      | 463,000       | 124,000   | 48,700     | 631,000  | 125,000 | 3,660   | 6,430   |
| Iron                                                              | 7439896                                                               | 6,650        | 2,670         | 50,900    | 204,000    | 364      | 75,800  | 3,500   | 17,100  |
| Lead                                                              | 7439921                                                               | 19,800       | 14,800        | 3,610     | 1,660      | ND       | 6,080   | 175,000 | 13,000  |
| Magnesium                                                         | 7439954                                                               | 1,320        | 1,590         | 6,620     | 10,700     | 230      | 72,600  | 187     | 2,640   |
| Manganese                                                         | 7439965                                                               | 72           | 24            | 496       | 191        | 104      | 2,080   | 13      | 92      |
| Mercury                                                           | 7439976                                                               | ND           | ND            | 0.3       | ND         | ND       | ND      | 0.5     | 0.4     |
| Nickel                                                            | 7440020                                                               | 99           | 51            | 2,900     | 1,990      | 10,800   | 1,030   | 2,420   | 71,900  |
| Selenium                                                          | 7782492                                                               | ND           | ND            | ND        | ND         | ND       | ND      | ND      | NE      |
| Silver                                                            | 7440224                                                               | 3            | ND            | 835       | 38         | 12       | 14      | 113     | 40      |
| Sodium                                                            | 7440235                                                               | 60           | 25            | 2,050     | 36,900     | 41,600   | 13,400  | 310     | 5,660   |
| Tin                                                               | 7440315                                                               | 3,570        | 3,850         | 14,700    | 37,200     | 402      | 131,000 | 467,000 | 15,300  |
| Zinc                                                              | 7440666                                                               | 31,600       | 24,600        | 782       | 389        | 2,750    | 820     | 672     | 357     |
|                                                                   |                                                                       | TCLP N       | Ietals - Meth | ods 1311, | 6010A, 747 | '0A mg/L |         |         |         |
| Arsenic                                                           | 7440382                                                               | ND           | ND            | ND        | ND         | ND       | ND      | ND      | NE      |
| Barium                                                            | 7440393                                                               | ND           | ND            | 1.5       | ND         | ND       | ND      | ND      | NE      |
| Cadmium                                                           | 7440439                                                               | 0.02         | 0.03          | ND        | ND         | ND       | ND      | 0.1     | NE      |
| Chromium                                                          | 7440473                                                               | ND           | ND            | 0.02      | ND         | ND       | ND      | ND      | NE      |
| Lead                                                              | 7439921                                                               | 35.4         | 39.8          | 0.64      | ND         | 0.08     | 0.13    | 1,630   | 1.20    |
| Mercury                                                           | 7439976                                                               | ND           | ND            | ND        | ND         | ND       | ND      | ND      | NE      |
| Selenium                                                          | 7782492                                                               | ND           | ND            | ND        | ND         | ND       | ND      | ND      | NE      |
| Silver                                                            | 7440224                                                               | ND           | ND            | ND        | ND         | ND       | ND      | ND      | NE      |
| General Chemistry - Methods 300.0, 335.2, 335.1, 7195/6010A mg/kg |                                                                       |              |               |           |            |          |         |         |         |
| Chloride                                                          | 16887006                                                              | 1,630        | 1,490         | 590       | 2,250      | 24,000   | 4,110   | 64      | 905     |
| Fluoride                                                          | 16984488                                                              | ND           | ND            | 100       | 3,090      | ND       | ND      | ND      | NE      |
| Hex. Chromium                                                     | 18540299                                                              | 548          | 466           | ND        | ND         | 31       | ND      | ND      | NE      |
| Total Cyanide                                                     | 57125                                                                 | 169          | 127           | ND        | 9.1        | ND       | ND      | ND      | NE      |
| Amen. Cyanide                                                     | E-10275                                                               | **359        | **369         | **3.9     | **75.1     | **20.8   | **16.6  | **14.7  | **39.4  |
| Percent Solids                                                    |                                                                       | 27.5         | 29.3          | 34.4      | 34.9       | 27.2     | 45.2    | 94.1    | 41.1    |
| Notes: ND - not                                                   | detected *A                                                           | ll results r | reported on a |           | t basis.   |          |         |         |         |

\*\*Reported value is the concentration of cyanide after chlorination. Since this value is greater than the total cyanide result, a value for the cyanide amenable to chlorination cannot be calculated.

#### 4. Detailed Results of the National Benchmarking Study

Tables 20- 32 present detailed results of the National Benchmarking Study. The data gathered is similar in type but is often less detailed than the data gathered in the Regional Benchmarking Study. Data categories include: metal finishing operations, pollution prevention practices, F006 characteristics and sludge management practices from a broad range of metal finishers (Appendix G contains the survey instrument). The survey was distributed by mail to member companies of NAMF and AESF, and at a metal finishers national technical conference (SURFIN 97). In all, nearly 2,000 surveys were distributed. One hundred eighty-six (186) responses were received and compiled into a computer data base. A variety of firms responded. The number of employees of respondents ranged from 4 to 7,250 with an average of 229. The survey question number is indicated in the summaries below in [brackets].

a. Characterization of the Survey Respondents

| Average number of employees responding:<br>Maximum number of employees responding:<br>Minimum number of employees responding:                 | 7,250 229<br>4     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A total of 186 surveys were received.                                                                                                         |                    |
| Number of respondents to this question:                                                                                                       | 171 / 186 = 92 %   |
| b. Product and Waste Stream Characterizati                                                                                                    | on [C1]            |
| Respondents reported product weight using of<br>Average of the responses reported in cubic y<br>Average of the responses reported in barrel 1 | ards : 60,867 tons |
| Number of responses to this question:                                                                                                         | 88 / 186 = 47%     |
| c. Total quantity of F006 waste generated in                                                                                                  | n 1996 [C4]        |
| Average of reponses reported in tons:                                                                                                         | 1016 tons          |
| Number of responses to this question:                                                                                                         | 161 / 186 = 87%    |
| d. F006 segregation [C2]                                                                                                                      |                    |
| Facilities reporting that F006 wastes are com                                                                                                 |                    |

Facilities reporting that F006 wastes are combined in the wastewater:139Facilities reporting that F006 wastes are process-specific:22

Number of responses to this question: 161 / 186 = 87%

e. Cyanide sludge segregation [C3]

Facilities reporting that cyanide-bearing F006 sludges are segregated:33Facilities reporting that cyanide-bearing F006 sludges are not segregated:151

Number of responses to this question: 184 / 186 = 99%

f. Quantity of F006 waste generated by process [C5]

Respondents reported generating an average 1,016 tons of F006 sludge annually. As noted in the statistical analysis section, larger companies tended to respond more than smaller companies. A summary of F006 sludge generated by groups of plating processes is provided in Table 20. Table 21 presents the estimates of process-

specific F006 waste generation for 1996. The quantities assume that all units are equivalent (e.g., cubic yards and dry tons).

| Table 20: Summary of F006 Sludge Generation by Plating Category |                     |  |  |
|-----------------------------------------------------------------|---------------------|--|--|
| Plating Category                                                | Quantity (dry tons) |  |  |
| Mixed Acids                                                     | 118750.47           |  |  |
| Anodizing                                                       | 19.05               |  |  |
| Bright Dip of Copper/alloy                                      | 74.82               |  |  |
| Cadmium                                                         | 6373.50             |  |  |
| All Chrome                                                      | 55467.93            |  |  |
| Cleaner                                                         | 122.65              |  |  |
| All Copper                                                      | 7419.35             |  |  |
| All Cyanide                                                     | 8328.32             |  |  |
| All Electroless Nickel                                          | 14.88               |  |  |
| All Ion Exchange                                                | 14.42               |  |  |
| All Nickel                                                      | 23019.36            |  |  |
| Silver Plate                                                    | 75.65               |  |  |
| Stainless Electropolish                                         | 68.63               |  |  |
| Tin                                                             | 51.45               |  |  |
| All Zinc                                                        | 15938.36            |  |  |

|          | Table 21. Process-Specific F006 Waste Generation for 1996 |           |             |  |  |
|----------|-----------------------------------------------------------|-----------|-------------|--|--|
| Facility | Process                                                   | Quantity  | Measure     |  |  |
| 027      | Not available                                             | 1.00      | Cubic Yards |  |  |
| 064      | Not available                                             | 30.30     | Dry Tons    |  |  |
| 022      | Not available                                             |           | Dry Tons    |  |  |
| 016      | Not available                                             |           | Dry Tons    |  |  |
| 016      | Not available                                             | 0.14      | Dry Tons    |  |  |
| 078      | ABS/Steel Chromium plating                                |           | Dry Tons    |  |  |
| 123      | acid                                                      | 80.00     | Cubic Yards |  |  |
| 037      | acid batch treat                                          | 0.13      | Dry Tons    |  |  |
| 090      | acid copper                                               | 6.04      | Dry Tons    |  |  |
| 037      | acid rinses                                               | 26.50     | Dry Tons    |  |  |
| 083      | acid-alkali wastewater                                    | 118388.00 | Dry Tons    |  |  |
| 145      | acid-chloride zinc                                        | 90.00     | Dry Tons    |  |  |
| 075      | acid/alkaline                                             |           | Long Tons   |  |  |
| 023      | acid/alkaline rinses                                      | 17.97     | Metric Tons |  |  |
| 001      | alum treating                                             | 8.00      | Dry Tons    |  |  |
| 036      | anodizing                                                 |           | Cubic Yards |  |  |
| 148      | anodizing                                                 | 1.00      | Cubic Yards |  |  |
| 146      | anodizing                                                 |           | Dry Tons    |  |  |
| 144      | sulfuric acid anodizing                                   | 0.05      | Dry Tons    |  |  |
| 174      | Sulfuric Anodize/Hardcoat                                 |           | Dry Tons    |  |  |
| 144      | bright dip of copper/alloys                               | 6.00      | Dry Tons    |  |  |
| 035      | black oxide                                               | 25.00     | Cubic Yards |  |  |
| 112      | brass plating                                             | 0.50      | Dry Tons    |  |  |

| Table 21. Process-Specific F006 Waste Generation for 1996 |                                             |          |             |  |
|-----------------------------------------------------------|---------------------------------------------|----------|-------------|--|
| Facility                                                  | Process                                     | Quantity | Measure     |  |
| 138                                                       | brass waste treatment                       | 40.60    | Dry Tons    |  |
| 057                                                       | bright dip of copper/alloy                  | 0.13     | Dry Tons    |  |
| 156                                                       | bright dip of copper/alloy                  | 2.60     | Dry Tons    |  |
| 155                                                       | bronze line cleaner side overflowing rinse  | 10.00    | Dry Tons    |  |
| 027                                                       | cadmium                                     |          | Cubic Yards |  |
| 026                                                       | barrel cadmium                              |          | Dry Tons    |  |
| 173                                                       | cadmium                                     |          | Dry Tons    |  |
| 066                                                       | cadmium                                     | 26.00    | Cubic Yards |  |
| 057                                                       | cadmium plating                             |          | Dry Tons    |  |
| 120                                                       | cadmium plating                             |          | Dry Tons    |  |
| 114                                                       | cadmium and other processes                 |          | Dry Tons    |  |
| 133                                                       | cyanide cadmium plating                     | 55.00    | Cubic Feet  |  |
| 026                                                       | rack cadmium                                | 3126.00  | Dry Tons    |  |
| 119                                                       | chelate                                     | 20.00    | Dry Tons    |  |
| 048                                                       | chromating                                  |          | Dry Tons    |  |
| 119                                                       | chrome                                      | 15.00    | Dry Tons    |  |
| 096                                                       | chrome                                      | 8.10     | Dry Tons    |  |
| 075                                                       | chrome                                      | 54.75    | Long Tons   |  |
| 065                                                       | chrome anodize                              | 1.50     | Dry Tons    |  |
| 080                                                       | chrome hydroxide                            | 55.70    | Dry Tons    |  |
| 183                                                       | chrome plate                                | 10245.00 | Dry Tons    |  |
| 038                                                       | chrome plating                              | 1.00     | Dry Tons    |  |
| 051                                                       | chrome plating                              | 10.92    | Dry Tons    |  |
| 059                                                       | chrome plating and chromating               | 61.00    | Cubic Yards |  |
| 082                                                       | chrome plating and chromating               | 43.75    | Dry Tons    |  |
| 023                                                       | chrome rinses                               | 5.39     | Metric Tons |  |
| 134                                                       | chrome rinses                               | 46.50    | Dry Tons    |  |
| 085                                                       | chrome/nickel                               |          | Dry Tons    |  |
| 054                                                       | chromic anodize                             | 16.00    | Dry Tons    |  |
| 174                                                       | chromic anodize                             |          | Dry Tons    |  |
| 090                                                       | chromium                                    |          | Dry Tons    |  |
| 058                                                       | chromium                                    | 0.99     | Dry Tons    |  |
| 083                                                       | chromium contaminated wastewater            | 35687.00 | Dry Tons    |  |
| 049                                                       | hard chrome                                 | 7508.00  | Dry Tons    |  |
| 046                                                       | hard chrome                                 |          | Dry Tons    |  |
| 034                                                       | hard chrome                                 | 7.00     | Dry Tons    |  |
| 039                                                       | hard chrome plating                         | 1500.00  | Cubic Feet  |  |
| 174                                                       | Conversion Coating                          |          | Dry Tons    |  |
| 148                                                       | conversion coatings                         | 2.00     | Cubic Yards |  |
| 156                                                       | Chromate conversion on aluminum             | 1.75     | Dry Tons    |  |
| 116                                                       | cleaner tank bottoms                        |          | Dry Tons    |  |
| 141                                                       | cleaning                                    | 5.00     | Dry Tons    |  |
| 104                                                       | cleaning (soap and acid); aluminum cleaning |          | Dry Tons    |  |
| 004                                                       | cleaning rinses                             | 93.50    | Dry Tons    |  |
| 185                                                       | batch treats(cleaners & Microetch)          | 14.00    | Dry Tons    |  |

|          | Table 21. Process-Specific F006 Waste Ger   | neration for 1990 | 6           |
|----------|---------------------------------------------|-------------------|-------------|
| Facility | Process                                     | Quantity          | Measure     |
| 110      | copper nickel plating                       | 75.00             | Dry Tons    |
| 042      | copper                                      | 5.51              | Dry Tons    |
| 021      | copper & brass                              | 2.60              | Dry Tons    |
| 112      | copper nickel chrome plating on non ferrous | 40.00             | Dry Tons    |
| 112      | copper nickel chrome plating on steel       |                   | Dry Tons    |
| 183      | copper plate                                | 657.00            | Dry Tons    |
| 061      | copper plate                                | 40.00             | Dry Tons    |
| 036      | copper plate                                | 0.50              | Cubic Yards |
| 057      | copper plating                              |                   | Dry Tons    |
| 082      | copper plating                              |                   | Dry Tons    |
| 136      | copper, nickel, chromium on steel           |                   | Dry Tons    |
| 145      | copper-nickel-chrome                        | 9.00              | Dry Tons    |
| 053      | copper/ni/chrome on ABS                     | 140.00            | Dry Tons    |
| 027      | copper/nickel/chrome                        |                   | Cubic Yards |
| 016      | copper/nickel/chrome                        |                   | Dry Tons    |
| 049      | copper/nickel/chrome                        | 6000.00           | Dry Tons    |
| 170      | copper/nickel/chrome decorative plating     |                   | Cubic Yards |
| 157      | copper/nickel/chrome plating on plastic     | 300.00            | Dry Tons    |
| 014      | Cu, Ni, Cr                                  | 23.50             | Dry Tons    |
| 137      | Cu/Ni/Cr on non-ferrous                     | 5.55              | Dry Tons    |
| 090      | cyanide copper                              | 4.03              | Dry Tons    |
| 147      | cyanide copper plating on zinc die cast     |                   | Dry Tons    |
| 086      | cyanide copper/cyanide brass                |                   | Cubic Yards |
| 083      | cyanide contaminated wastewater             |                   | Dry Tons    |
| 123      | cyanide                                     | 200.00            | Cubic Yards |
| 119      | cyanide                                     |                   | Dry Tons    |
| 075      | cyanide                                     |                   | Long Tons   |
| 010      | cyanide bearing rinse waters                |                   | Dry Tons    |
| 031      | Cyanide destruction                         |                   | Dry Tons    |
| 085      | cyanide processes                           |                   | Dry Tons    |
| 023      | cyanide rinses                              |                   | Metric Tons |
| 134      | cyanide rinses                              |                   | Dry Tons    |
| 037      | cyanide rinses                              |                   | Dry Tons    |
| 029      | misc cyanide wastes                         |                   | Dry Tons    |
| 055      | electroless nickel                          |                   | Dry Tons    |
| 048      | electroless nickel and gold plating         |                   | Dry Tons    |
| 038      | electroless nickel plating                  |                   | Dry Tons    |
| 140      | hot dip galv                                |                   | Dry Tons    |
| 117      | ion exchange                                |                   | Dry Tons    |
| 050      | ion exchange regen                          |                   | Dry Tons    |
| 038      | iron plating                                |                   | Dry Tons    |
| 041      | lead plating                                |                   | Cubic Yards |
| 019      | Mn & zinc phosphate                         |                   | Dry Tons    |
| 137      | Ni/Cr on steel                              |                   | Dry Tons    |
| 096      | nickel                                      | 0.90              | Dry Tons    |

| FacilityProcess042nickel035nickel021nickel173nickel050nickel090nickel090nickel bearing-acid/alkali rinses036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating034nickel plating035nickel plating047nickel plating059nickel plating047nickel plating051nickel plating055nickel plating051nickel plating051nickel plating052nickel plating053nickel plating054nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chrome plating071nickel chromium plating026barrel nickel                    | 63.31           10.00           2.00           6.42           8.42           3.00           684.00           25.00           0.40           3.00           3.00           10.00           25.00           0.40           3.00           3.00           10.40           3.00           37.50           60.00           0.50           3.00           1.00           21.00           10.49           30.25 | MeasureDry TonsCubic YardsDry TonsDry TonsDry TonsDry TonsDry TonsCubic YardsDry TonsDry Tons |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 035nickel021nickel173nickel050nickel090nickel010nickel bearing-acid/alkali rinses036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating034nickel plating035nickel plating036nickel plating037nickel plating038nickel plating039nickel plating040nickel plating051nickel plating055nickel plating051nickel plating051nickel plating (all types)147nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating | 10.00           2.00           2.00           2.00           6.42           8.42           3.00           3.00           684.00           25.00           0.40           3.00           3.00           684.00           0.50           3.00           3.00           37.50           60.00           0.50           3.00           1.00           21.00           10.49           30.25                  | Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                     |
| 021nickel173nickel050nickel090nickel010nickel bearing-acid/alkali rinses036nickel plate183nickel plate183nickel plating034nickel plating035nickel plating036nickel plating037nickel plating038nickel plating039nickel plating040nickel plating051nickel plating055nickel plating047nickel plating047nickel plating047nickel plating051nickel plating051nickel plating (all types)147nickel plating treatment132nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chrome plating071nickel chromium plating                                       | 2.00<br>2.00<br>6.42<br>8.42<br>3.00<br>684.00<br>25.00<br>0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                             | Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                            |
| 173nickel050nickel090nickel010nickel bearing-acid/alkali rinses036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating034nickel plating035nickel plating036nickel plating037nickel plating038nickel plating049nickel plating059nickel plating047nickel plating047nickel plating047nickel plating051nickel plating051nickel plating (all types)147nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating100nickel/chrome plating073nickel/chrome plating080nickel/chromium plating071nickel chromium plating                       | 2.00<br>6.42<br>8.42<br>3.00<br>684.00<br>25.00<br>0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                     | Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                    |
| 050nickel090nickel010nickel bearing-acid/alkali rinses036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating034nickel plating035nickel plating036nickel plating037nickel plating038nickel plating049nickel plating059nickel plating047nickel plating047nickel plating047nickel plating051nickel plating051nickel plating (all types)147nickel plating on zinc die cast029nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating100nickel/chrome plating073nickel/chrome plating080nickel/copper hyd.071nickel chromium plating                              | 2.00<br>6.42<br>8.42<br>3.00<br>684.00<br>25.00<br>0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                     | Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                    |
| 090nickel010nickel bearing-acid/alkali rinses036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating033nickel plating082nickel plating059nickel plating047nickel plating047nickel plating055nickel plating065nickel plating051nickel plating012nickel plating (all types)147nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/chromium plating071nickel chromium plating                                                                                          | 8.42           3.00           3.00           684.00           25.00           0.40           3.00           37.50           60.00           0.50           3.00           1.00           21.00           10.49           30.25                                                                                                                                                                           | Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                    |
| 010nickel bearing-acid/alkali rinses036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating034nickel plating035nickel plating047nickel plating047nickel plating047nickel plating047nickel plating059nickel plating051nickel plating051nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                      | 8.42           3.00           3.00           684.00           25.00           0.40           3.00           37.50           60.00           0.50           3.00           1.00           21.00           10.49           30.25                                                                                                                                                                           | Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                    |
| 036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating033nickel plating082nickel plating059nickel plating047nickel plating045nickel plating056nickel plating051nickel plating051nickel plating (all types)147nickel plating treatment132nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/chromium plating071nickel chromium plating                                                                                                                             | 3.00<br>684.00<br>25.00<br>0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                             | Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                            |
| 036nickel plate183nickel plate(incl. Electroless Nickel)004nickel plating038nickel plating033nickel plating034nickel plating035nickel plating047nickel plating047nickel plating047nickel plating059nickel plating065nickel plating071nickel plating082nickel plating083nickel plating044nickel plating055nickel plating065nickel plating071nickel chromium plating                                                                                                                                                                                                                                                                                                  | 3.00<br>684.00<br>25.00<br>0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                             | Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                            |
| 004nickel plating038nickel plating033nickel plating033nickel plating082nickel plating059nickel plating146nickel plating047nickel plating065nickel plating051nickel plating051nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome100nickel/chrome plating100nickel/chrome plating073nickel/chromium plating080nickel/chromium plating071nickel chromium plating                                                                                                                                                                                                        | 25.00<br>0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                               | Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                       |
| 038nickel plating033nickel plating082nickel plating059nickel plating146nickel plating047nickel plating065nickel plating075nickel plating071nickel plating (all types)147nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome175nickel/chrome176nickel/chrome177nickel/chrome178nickel/chrome179nickel/chrome170nickel/chrome plating100nickel/chrome plating101nickel/chromium plating102nickel/chromium plating103nickel/chromium plating104nickel/chromium plating105nickel/chromium plating106nickel/chromium plating1071nickel chromium plating                                                                                   | 0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                        | Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                                               |
| 033nickel plating082nickel plating059nickel plating146nickel plating047nickel plating065nickel plating075nickel plating071nickel plating071nickel plating (all types)147nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome100nickel/chrome100nickel/chrome plating105nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                          | 0.40<br>3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                        | Dry Tons<br>Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                                               |
| 033nickel plating082nickel plating059nickel plating146nickel plating047nickel plating065nickel plating075nickel plating071nickel plating071nickel plating (all types)147nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome100nickel/chrome100nickel/chrome plating105nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                          | 3.00<br>37.50<br>60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                                | Dry Tons<br>Dry Tons<br>Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                                                           |
| 059nickel plating146nickel plating047nickel plating065nickel plating075nickel plating071nickel plating (all types)147nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                           | 60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                                                 | Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                                                                                   |
| 059nickel plating146nickel plating047nickel plating045nickel plating065nickel plating175nickel plating051nickel plating (all types)012nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome plating100nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                          | 60.00<br>0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                                                 | Cubic Yards<br>Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                                                                                   |
| 146nickel plating047nickel plating065nickel plating175nickel plating051nickel plating (all types)012nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                            | 0.50<br>3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                                                          | Dry Tons<br>Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                                                                                                  |
| 047nickel plating065nickel plating175nickel plating051nickel plating (all types)012nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome plating100nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                             | 3.00<br>1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                                                                  | Dry Tons<br>Dry Tons<br>Dry Tons                                                                                                                                                                                                                                                                                                              |
| 065nickel plating175nickel plating051nickel plating012nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                          | 1.00<br>21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons<br>Dry Tons                                                                                                                                                                                                                                                                                                                          |
| 175nickel plating051nickel plating012nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                           | 21.00<br>10.49<br>30.25                                                                                                                                                                                                                                                                                                                                                                                  | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 051nickel plating012nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                            | 10.49<br>30.25                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |
| 012nickel plating (all types)147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                             | 30.25                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                               |
| 147nickel plating on zinc die cast029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 029nickel plating treatment132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                            | 0.21                                                                                                                                                                                                                                                                                                                                                                                                     | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 132nickel, silver, chrome, tin, and E-coat054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 054nickel/chrome026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 026automatic nickel/chrome173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 173nickel/chrome100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 100nickel/chrome plating105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 105nickel/chrome plating073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 073nickel/chromium plating080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 080nickel/copper hyd.071nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 071 nickel chromium plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3126.00                                                                                                                                                                                                                                                                                                                                                                                                  | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 146 passivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 066 phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          | Cubic Yards                                                                                                                                                                                                                                                                                                                                   |
| 183 Silver Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 111     silver plating operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                          | Long Tons                                                                                                                                                                                                                                                                                                                                     |
| 148     silver, tin, electroless nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                          | Cubic Yards                                                                                                                                                                                                                                                                                                                                   |
| 105     stainless electropolish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 144 stainless steel passivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 180 Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 141 stripping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 021 tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 019 tin plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                     | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 004 tin plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                          | Dry Tons                                                                                                                                                                                                                                                                                                                                      |
| 041 tin/lead plating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                     | Cubic Yards                                                                                                                                                                                                                                                                                                                                   |

|          | Table 21. Process-Specific F006 Waste Generation for 1996 |          |             |  |  |  |  |
|----------|-----------------------------------------------------------|----------|-------------|--|--|--|--|
| Facility | Process                                                   | Quantity | Measure     |  |  |  |  |
| 071      | titanium                                                  | 5.00     | Dry Tons    |  |  |  |  |
| 014      | zinc                                                      |          | Dry Tons    |  |  |  |  |
| 084      | zinc                                                      | 15.00    | Dry Tons    |  |  |  |  |
| 072      | zinc                                                      |          | Dry Tons    |  |  |  |  |
| 071      | zinc                                                      |          | Dry Tons    |  |  |  |  |
| 066      | zinc                                                      | 126.00   | Cubic Yards |  |  |  |  |
| 027      | zinc                                                      |          | Cubic Yards |  |  |  |  |
| 021      | zinc                                                      | 76.50    | Dry Tons    |  |  |  |  |
| 180      | zinc                                                      |          | Dry Tons    |  |  |  |  |
| 042      | zinc                                                      |          | Dry Tons    |  |  |  |  |
| 148      | zinc and cadmium plating                                  | 15.00    | Cubic Yards |  |  |  |  |
| 095      | zinc cyanide                                              |          | Dry Tons    |  |  |  |  |
| 104      | zinc cyanide plating and chromate conversion              |          | Dry Tons    |  |  |  |  |
| 094      | zinc electroplating                                       |          | Cubic Yards |  |  |  |  |
| 125      | zinc electroplating, zinc nickel alloy electropl.         |          | Cubic Yards |  |  |  |  |
| 109      | zinc electrotherapy on steel                              |          | Dry Tons    |  |  |  |  |
| 080      | zinc hydroxide                                            |          | Dry Tons    |  |  |  |  |
| 137      | zinc on steel                                             |          | Dry Tons    |  |  |  |  |
| 136      | zinc on steel                                             | 19.50    | Dry Tons    |  |  |  |  |
| 144      | zinc phosphate                                            |          | Dry Tons    |  |  |  |  |
| 061      | zinc plate                                                |          | Dry Tons    |  |  |  |  |
| 008      | zinc plating                                              | 5507.20  | Dry Tons    |  |  |  |  |
| 140      | zinc plating                                              |          | Dry Tons    |  |  |  |  |
| 003      | zinc plating                                              |          | Dry Tons    |  |  |  |  |
| 065      | zinc plating                                              | 25.00    | Dry Tons    |  |  |  |  |
| 001      | zinc plating                                              |          | Dry Tons    |  |  |  |  |
| 132      | zinc plating                                              |          | Dry Tons    |  |  |  |  |
| 082      | zinc plating                                              |          | Dry Tons    |  |  |  |  |
| 004      | zinc plating                                              | 150.00   | Dry Tons    |  |  |  |  |
| 045      | zinc plating                                              | 1040.00  | Cubic Yards |  |  |  |  |
| 070      | zinc plating                                              | 80.00    | Cubic Yards |  |  |  |  |
| 105      | zinc plating                                              | 40.62    | Dry Tons    |  |  |  |  |
| 059      | zinc plating                                              |          | Cubic Yards |  |  |  |  |
| 019      | zinc plating                                              | 300.00   | Dry Tons    |  |  |  |  |
| 048      | zinc plating                                              | 144.90   | Dry Tons    |  |  |  |  |
| 100      | zinc plating                                              | 11.40    | Dry Tons    |  |  |  |  |
| 035      | zinc plating                                              | 200.00   | Cubic Yards |  |  |  |  |
| 012      | zinc plating (all types)                                  | 60.50    | Dry Tons    |  |  |  |  |
| 088      | zinc plating on steel                                     |          | Dry Tons    |  |  |  |  |
| 120      | zinc plating on steel                                     | 140.00   | Dry Tons    |  |  |  |  |
| 156      | zinc plating on steel                                     | 83.00    | Dry Tons    |  |  |  |  |
| 145      | zinc-phosphate                                            | 1.00     | Dry Tons    |  |  |  |  |
| 098      | ZnNi alloy plating & chromating of Zn & ZnNi              | 7.00     | Dry Tons    |  |  |  |  |
| 102      | chloride zinc on steel                                    | 23.00    | Cubic Yards |  |  |  |  |
| 118      | all zinc plating                                          | 84.00    | Cubic Yards |  |  |  |  |

g. On-site recycling techniques prior to discharge [C6]

Number of responses to this question: 36/186 = 19%

On-site recycling techniques that were mentioned by more than one company:
Electrowinning
Counter flow rinsing
Drag out rinses returned to plating tank
Electrodialysis
Evaporation
Precipitation

- Precipitation

Metals that are recovered: brass, cadmium, chrome, copper, nickel, gold, silver.

Table 22 contains individual responses.

|          | Table 22. On-Site Recycling Techniques            |          |             |  |  |  |
|----------|---------------------------------------------------|----------|-------------|--|--|--|
| Facility | Description                                       | Quantity | Measure     |  |  |  |
| 023      | BEWT Chemelec Unit, Reverse Cn Stip, Jaynor Units | 1.70     | Dry Tons    |  |  |  |
| 018      | brass                                             | 0.10     | Dry Tons    |  |  |  |
| 018      | cadmium                                           | 0.10     | Dry Tons    |  |  |  |
| 075      | cadmium electrowinning                            | 0.25     | Dry Tons    |  |  |  |
| 001      | chrome recovery                                   | 2.00     | Dry Tons    |  |  |  |
| 110      | chromic acid through demineralizes                | 50.00    | Dry Tons    |  |  |  |
| 018      | copper                                            | 0.15     | Dry Tons    |  |  |  |
| 160      | copper grinding swarf                             | 2.50     | Dry Tons    |  |  |  |
| 157      | Corning Evaporators for Chrome Drag-out           | 75.00    | Dry Tons    |  |  |  |
| 038      | counter flow rinsing chrome plate                 | 1.00     | Dry Tons    |  |  |  |
| 038      | counter flow rinsing nickel plating               | 0.75     | Dry Tons    |  |  |  |
| 141      | drag out rinses                                   | 1.00     | Dry Tons    |  |  |  |
| 095      | drag out tanks used for tank replenishment        | 1.00     | Cubic Yards |  |  |  |
| 098      | drag out from plating tanks returned to bath      | 6.50     | Dry Tons    |  |  |  |
| 106      | electrodialysis of rinsewater                     | 0.25     | Dry Tons    |  |  |  |
| 124      | electroless nickel directly reduced               | 0.05     | Dry Tons    |  |  |  |
| 168      | electrowinning of gold solutions                  | 500.00   | Dry Tons    |  |  |  |
| 168      | electrowinning of silver solutions                | 3000.00  | Dry Tons    |  |  |  |
| 168      | electrowinning of solder and tin solutions        | 1.00     | Dry Tons    |  |  |  |
| 010      | electrowinning-plating cells                      | 0.06     | Dry Tons    |  |  |  |
| 116      | evaporating recovery                              | 0.20     | Dry Tons    |  |  |  |
| 180      | evaporators                                       | 30.00    | Dry Tons    |  |  |  |
| 180      | ion exchangers                                    | 10.00    | Dry Tons    |  |  |  |
| 138      | metal recovery systems                            | 3.50     | Dry Tons    |  |  |  |
| 075      | nickel evaporation                                | 0.75     | Dry Tons    |  |  |  |
| 055      | nickel plate out from electroless nickel solution | 0.05     | Dry Tons    |  |  |  |
| 157      | nickel precipitation as carbonate                 | 35.00    | Dry Tons    |  |  |  |
| 008      | precipitation, filtration, & drying               | 5507.20  | Dry Tons    |  |  |  |
| 160      | re-sell copper turnings                           | 7.50     | Dry Tons    |  |  |  |

| Table 22. On-Site Recycling Techniques |                                                   |        |            |  |  |  |
|----------------------------------------|---------------------------------------------------|--------|------------|--|--|--|
| Facility                               | ity Description Quantity Mea                      |        |            |  |  |  |
| 041                                    | reclaim tanks (dead rinse) used some solution     | 104.00 | Cubic Feet |  |  |  |
| 009                                    | silver electrowinning                             | 0.25   | Dry Tons   |  |  |  |
| 093                                    | silver reclaim using plate out unit 0.08 Dry Tons |        |            |  |  |  |
| 163                                    | six Eco-tec ion exchange units 4.20 Dry Te        |        |            |  |  |  |
| 055                                    | sulfuric acid reclamation from anodize tank       |        | Dry Tons   |  |  |  |
| 155                                    | use rinse water from plating side for bath makeup | 1.40   | Dry Tons   |  |  |  |
| 034                                    | washdown from fume scrubbers returned to tank     | 1.00   | Dry Tons   |  |  |  |

h. Off-site recycling companies [C7]

Number of respondents: 15/186 = 8%

The following processes were used to recycle F006 wastes:

- Blending

- High temperature incineration Hydro metallurgical Pyrometallurgical Smelting Thermo concentration and compounding

- Off-site recycling companies: World Resources Corp Horsehead Resource Development Corp Encycle/Texas Inc 21<sup>st</sup> Century EMI

- Republic Environmental

Table 23 contains individual responses.

|          | Table 23. Off-Site Recycling Techniques |          |             |                        |                       |  |  |
|----------|-----------------------------------------|----------|-------------|------------------------|-----------------------|--|--|
| Facility | Process                                 | Quantity | Measure     | Name                   | Location              |  |  |
| 023      | Blending                                | 47.00    | Cubic Yards | World Resources        | Pottsville, PA        |  |  |
| 136      | high temp incineration                  | 42.50    | Dry Tons    | Horsehead              | Chicago, Il           |  |  |
| 070      | high temp incineration                  | 60.00    | Cubic Yards | Horsehead              | Chicago, IL           |  |  |
| 014      | high temp incineration                  | 43.50    | Dry Tons    | Horsehead              | Chicago, IL           |  |  |
| 137      | Hydro Metallurgical                     | 37.00    | Dry Tons    | Encycle/Texas Inc      | Corpus Christi,<br>TX |  |  |
| 134      | Pyrometallurgical                       | 61.80    | Dry Tons    | Horsehead              | Chicago, IL           |  |  |
| 075      | Pyrometallurgical                       | 248.84   | Dry Tons    | World Resources        | Pottsville, PA        |  |  |
| 050      | Pyrometallurgical                       | 14.85    | Dry Tons    | 21st century EMI       | Fernly, NV            |  |  |
| 043      | Pyrometallurgical                       | 13.20    | Dry Tons    | World Resources        | Phoenix, AZ           |  |  |
| 020      | Pyrometallurgical                       | 36.00    | Dry Tons    | Republic Environmental | Hamilton,<br>Ontario  |  |  |
| 008      | Pyrometallurgical                       | 5507.20  | Dry Tons    | World Resources        | Phoenix, AZ           |  |  |

|          | Table 23. Off-Site Recycling Techniques |                                        |           |                 |             |  |  |
|----------|-----------------------------------------|----------------------------------------|-----------|-----------------|-------------|--|--|
| Facility | Process                                 | Process Quantity Measure Name Location |           |                 |             |  |  |
| 003      | Pyrometallurgica                        | 22.00                                  | Long Tons | World Resources | Pheonix, AZ |  |  |
| 051      | smelting                                | 22.40                                  | Dry Tons  | World Resources | Phoenix, AZ |  |  |
| 031      | thermo concentration and compounding    | 18.53                                  | Dry Tons  | World Resources | Phoenix, AZ |  |  |
| 024      | thermo concentration and compounding    | 55.00                                  | Dry Tons  | World Resources | Phoenix, AZ |  |  |

# i. Management methods for F006 wastes [C8]

Number of responses: 57

Management methods: • Incineration

- Neutralization
- Recycling
- Solidification
- Stabilization, landfilling Subtitle C landfill

Receiving facilities: • Envirite

- Wayandot Landfill LWD
- Cynochem
- Envotech
- Stablex Canada Heritage Environmental
- Threamionic
- **Romic Environmental**

- Chemical Waste Management Peoria Disposal LESI USPCI

• •

•

•

- •
- Cycle Chem Northland Environment Phillips Environmental Chief Supply

| Table 24. Waste Management Methods F006 Wastes |          |          |             |                      |                   |
|------------------------------------------------|----------|----------|-------------|----------------------|-------------------|
| Mgt                                            | Facility | Quantity | Measure     | Name                 | Location          |
| delisted facility                              | 002      | 26.00    | Cubic Yards | Envirite             | Thomaston, CT     |
| delisted facility                              | 170      | 42.00    | Cubic Yards | Wayandot Landfill    | Carey, OH 43316   |
| delisted facility                              | 115      | 24.00    | Cubic Yards | Envirite             | Canton, OH        |
| delisted facility                              | 125      | 575.00   | Cubic Yards | Envirite of Illinois | Harvey, IL        |
| delisted facility                              | 052      | 320.20   | Dry Tons    | Envirite Corporation | Canton, OH        |
| delisted facility                              | 066      | 100.00   | Dry Tons    | Envirite             |                   |
| incineration                                   | 029      | 16.75    | Dry Tons    | LWD                  | Calventy City, KY |
| incineration                                   | 133      | 55.00    | Cubic Feet  | Cynochem             | Detroit, MI       |
| neutralization                                 | 152      | 4850.00  | gal         | Cyanokem             | Detroit, MI       |
| recycle                                        | 063      | 274.50   | Dry Tons    |                      |                   |
| recycle                                        | 179      | 35.01    | Dry Tons    | World Resource Co.   | Pheonix, AZ       |
| Solidification                                 | 100      | 11.50    | Dry Tons    | Envirite Corp.       | Canton, OH        |
| Solidification                                 | 108      | 28.00    | Dry Tons    | Envotech (EQ)        | Belleville, MI    |

Table 24 contains individual responses.

|                               | Table 24. Waste Management Methods F006 Wastes |          |             |                                                    |                               |
|-------------------------------|------------------------------------------------|----------|-------------|----------------------------------------------------|-------------------------------|
| Mgt                           | Facility                                       | Quantity | Measure     | Name                                               | Location                      |
| Solidification                | 098                                            | 7.00     | Dry Tons    | Envirite                                           | Canton, OH                    |
| Stabilization & fixation      | 048                                            | 154.00   | Dry Tons    | Stablex Canada, Inc.                               | Blainville, Quebec,<br>Canada |
| Stabilization,<br>landfilling | 065                                            | 1.50     | Dry Tons    | Heritage- nickel sludge                            | Indianapolis, IN              |
| Stabilization,<br>landfilling | 090                                            | 311.95   | Dry Tons    | Heritage Environmental                             | Indianapolis, IN              |
| Stabilization,<br>landfilling | 065                                            | 25.00    | Dry Tons    | Heritage- zinc hydroxide sludge                    | Indianapolis, IN              |
| Stabilization,<br>landfilling | 065                                            | 1.00     | Dry Tons    | Heritage- chrome sludge                            | Indianapolis, IN              |
| Stabilization,<br>landfilling | 064                                            | 30.30    | Dry Tons    | Envirite Corp.                                     | Canton, OH                    |
| Subtitle C Landfill           | 083                                            | 2.20     | Dry Tons    | Stablex                                            | Canada                        |
| Subtitle C Landfill           | 004                                            | 293.00   | Dry Tons    | Stablex Canada Inc., solidification and C landfill | Canada                        |
| Subtitle C Landfill           | 005                                            | 11.50    | Dry Tons    | Stablex Canada Inc.                                | Canada                        |
| Subtitle C Landfill           | 093                                            | 20.00    | Cubic Yards | Envirite                                           | Canton, OH                    |
| Subtitle C Landfill           | 026                                            | 38100.00 | Dry Tons    | Envirite                                           | Canton, OH                    |
| Subtitle C Landfill           | 041                                            | 3.00     | Dry Tons    | Envirite Corp.                                     | Harvey, IL                    |
| Subtitle C Landfill           | 071                                            | 44.00    | Dry Tons    | Threamionic                                        | Canada                        |
| Subtitle C Landfill           | 054                                            | 29.00    | Dry Tons    | Romic Environmental                                |                               |
| Subtitle C Landfill           | 074                                            | 131.00   | Dry Tons    | Chemical Waste Management<br>(Adams Center)        | Fort Wayne, IN                |
| Subtitle C Landfill           | 071                                            | 36.00    | Dry Tons    | Stablex                                            | Canada                        |
| Subtitle C Landfill           | 062                                            | 12.00    | Dry Tons    | Heritage Env. Service                              | Charlotte, NC                 |
| Subtitle C Landfill           | 066                                            | 146.00   | Dry Tons    | Peoria Disposal                                    |                               |
| Subtitle C Landfill           | 034                                            | 8.00     | Dry Tons    | Waste Management                                   | Indiana                       |
| Subtitle C Landfill           | 157                                            | 227.00   | Dry Tons    | Heritage Environmental                             | Indianapolis, IN              |
| Subtitle C Landfill           | 063                                            | 30.50    | Dry Tons    |                                                    |                               |
| Subtitle C Landfill           | 179                                            | 62.21    | Dry Tons    | Stablex                                            | Quebec, Canada                |
| Subtitle C Landfill           | 165                                            | 50.60    | Dry Tons    | LESI - Lone Mt                                     | Waynoka, OK                   |
| Subtitle C Landfill           | 164                                            | 863.00   | Dry Tons    | LESI - Lone Mt.                                    | Waynoka, OK                   |
| Subtitle C Landfill           | 163                                            | 1330.00  | Dry Tons    | LESI - Lone Mt Facility                            | Waynoka, OK                   |
| Subtitle C Landfill           | 162                                            | 505.00   | Dry Tons    | LESI - Lone Mt.                                    | Waynoka, OK                   |
| Subtitle C Landfill           | 161                                            | 945.00   | Dry Tons    | USCPI - Laidlaw                                    | Lone Mountain, OK             |
| Subtitle C Landfill           | 113                                            | 58.00    | Dry Tons    | Envirosafe Services of Idaho, Inc.                 | Boise, ID                     |
| Subtitle C Landfill           | 041                                            | 11.00    | Dry Tons    | Heritage Environmental Ser.                        | Indianapolis, IN              |
| Subtitle C Landfill           | 094                                            | 300.00   | Cubic Yards | hydroxide sludge non-hazardous                     | So. Elgin, IL                 |
| Subtitle C Landfill           | 157                                            |          | Dry Tons    | USPCI                                              | Lone Mountain, OK             |
| Subtitle C Landfill           | 155                                            |          | Dry Tons    | USPCI Lone Mountain                                | Oklahoma                      |
| Subtitle C Landfill           | 151                                            |          | Dry Tons    | Envirite Corp.                                     | North Canton, OH              |
| Subtitle C Landfill           | 147                                            |          | Dry Tons    | Cycle Chem                                         | Elizabeth, NJ                 |
| Subtitle C Landfill           | 146                                            |          | Dry Tons    | Northland Environmental                            | Providence, RI                |
| Subtitle C Landfill           | 134                                            |          | Dry Tons    | Chemical Waste Management Inc                      | Menomonee Falls, WI           |

|                     | Table 24. Waste Management Methods F006 Wastes |          |             |                         |                            |  |  |
|---------------------|------------------------------------------------|----------|-------------|-------------------------|----------------------------|--|--|
| Mgt                 | Facility                                       | Quantity | Measure     | Name                    | Location                   |  |  |
| Subtitle C Landfill | 132                                            | 20.00    | Dry Tons    | Envirite of Ohio        | Canton, OH                 |  |  |
| Subtitle C Landfill | 131                                            | 4.10     | Dry Tons    | chromic, muratic acid   | NV                         |  |  |
| Subtitle C Landfill | 119                                            | 64.00    | Dry Tons    | Phillips Environmental  | Canada                     |  |  |
| Subtitle C Landfill | 118                                            | 84.00    | Cubic Yards | Envirite Corporation    | Canton, OH                 |  |  |
| Subtitle C Landfill | 156                                            | 87.35    | Dry Tons    | USPCI                   | Lone Mountain, OK<br>73860 |  |  |
| thermal treatment   | 029                                            | 4.53     | Dry Tons    | Northeast Environmental | Wompsville, NY             |  |  |
| thermal treatment   | 029                                            | 6.03     | Dry Tons    | Chief Supply            | Haskl, OK                  |  |  |

## j. Exported Waste [C9]

Ten respondents reported exporting their F006 wastes, the responses are presented in Table 25 The other 174 respondents are not exporting F006 waste.

| Table 25. Export Quantities of F006 |                           |  |  |  |
|-------------------------------------|---------------------------|--|--|--|
| Facility No.                        | Exported Waste (dry tons) |  |  |  |
| 004                                 | 293.0                     |  |  |  |
| 005                                 | 11.5                      |  |  |  |
| 009                                 | 32.0                      |  |  |  |
| 048                                 | 154.0                     |  |  |  |
| 071                                 | 80.0                      |  |  |  |
| 083                                 | 2.2                       |  |  |  |
| 114                                 | 39                        |  |  |  |
| 119                                 | 64                        |  |  |  |
| 169                                 | 30                        |  |  |  |
| 179                                 | 64.7                      |  |  |  |

# k. Wastewater Treatment [C10]

Table 26 summarizes the number of respondents who are conducting wastewater treatment prior to discharge.

| Table 26. Facilities Conducting Wastewater Treatment Prior to Discharge |                                          |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| PROCESS                                                                 | NUMBER OF RESPONDENTS<br>ANSWERING "YES" |  |  |  |  |
| Waste stream segregation                                                | 92                                       |  |  |  |  |
| Hexavalent chrome reduction                                             | 119                                      |  |  |  |  |
| Cyanide oxidation                                                       | 69                                       |  |  |  |  |
| Neutralization, flocculation, clarification, effluent polishing         | 143                                      |  |  |  |  |
| Sludge blending to achieve desired concentration                        | 20                                       |  |  |  |  |

### 1. Plating Operations [B]

Table 27 summarizes responses to question B, "what type of plating operations are conducted by your facility?".

| Table 27. Types                     | Table 27. Types of Plating Conducted by Respondents |                                            |  |  |  |  |
|-------------------------------------|-----------------------------------------------------|--------------------------------------------|--|--|--|--|
| PROCESS                             | NUMBER OF<br>RESPONDENTS<br>ANSWERING "YES"         | NUMBER OF<br>RESPONDENTS<br>ANSWERING "NO" |  |  |  |  |
| Zinc plating on steel               | 92                                                  | 92                                         |  |  |  |  |
| Zinc plating on steel - cyanide     | 23                                                  | 161                                        |  |  |  |  |
| Zinc plating on steel – non-cyanide | 57                                                  | 127                                        |  |  |  |  |
| Nickel chromium                     | 82                                                  | 102                                        |  |  |  |  |
| Copper/nickel/chrome                | 62                                                  | 122                                        |  |  |  |  |
| Copper plating/stripping            | 7                                                   | 177                                        |  |  |  |  |
| Hard chromium                       | 36                                                  | 148                                        |  |  |  |  |
| Copper plating                      | 85                                                  | 99                                         |  |  |  |  |
| Tin                                 | 57                                                  | 127                                        |  |  |  |  |
| Cadmium                             | 45                                                  | 139                                        |  |  |  |  |
| Sulfuric acid                       | 45                                                  | 139                                        |  |  |  |  |
| Silver                              | 56                                                  | 128                                        |  |  |  |  |
| Gold                                | 48                                                  | 136                                        |  |  |  |  |
| Bright dip                          | 56                                                  | 128                                        |  |  |  |  |
| Other                               | 95                                                  | 89                                         |  |  |  |  |

## m. Pollution Prevention Waste Minimization Activities [E]

The respondents were asked to complete a checklist of 59 individual waste minimization techniques broken into three main categories (i.e., reduce drag out losses, reduce rinse water, and various operating practices). Table 28 presents the total number of positive responses for each of 59 waste minimization technique broken into three main categories (i.e. reduce drag out losses, reduce rinse water, and various operating practices). Three groups of facilities were identified: small, medium, and large. Each group contained an equal number of facilities (i.e., 61) to enable a comparison of techniques by facility size. Based on the analysis, it appears as though facility size is not a deciding factor in determining the number or type of waste minimization techniques implemented. This may be because the techniques included in the survey are relatively low cost and easy to implement. Larger facilities may be able to afford more sophisticated waste minimization improvements (e.g., process changes) that were not included in the survey. Table 29 identifies pollution prevention measures by technique.

| Table 28: Summa                                                        | Table 28: Summary of Techniques Used by Facility Size* |                                                |                                      |  |  |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Technique                                                              | Small Facilities (<30 employees)                       | Medium Facilities<br>(> 31 and < 65 employees) | Large Facilities<br>(> 65 employees) |  |  |  |  |  |
| Reduce drag-out losses Total                                           | 182                                                    | 175                                            | 232                                  |  |  |  |  |  |
| Allow rack/part to drip over plating tank                              | 33                                                     | 27                                             | 38                                   |  |  |  |  |  |
| Using drag-out rinse tanks and returning chemicals to the process bath | 27                                                     | 30                                             | 33                                   |  |  |  |  |  |
| Drip shields between tanks                                             | 18                                                     | 22                                             | 29                                   |  |  |  |  |  |
| Reduce rinse water use Total                                           | 151                                                    | 166                                            | 285                                  |  |  |  |  |  |
| Flow restrictors                                                       | 26                                                     | 39                                             | 58                                   |  |  |  |  |  |
| Countercurrent rinses                                                  | 30                                                     | 38                                             | 61                                   |  |  |  |  |  |
| Manually turn-off rinse waters                                         | 22                                                     | 28                                             | 47                                   |  |  |  |  |  |
| Air agitation in rinse tanks                                           | 22                                                     | 22                                             | 37                                   |  |  |  |  |  |
| Various operating practices<br>Total                                   | 586                                                    | 659                                            | 781                                  |  |  |  |  |  |
| Training and programs subtotal                                         | 120                                                    | 114                                            | 152                                  |  |  |  |  |  |

| Table 28: Summary of Techniques Used by Facility Size* |                                     |                                                |                                      |  |  |  |
|--------------------------------------------------------|-------------------------------------|------------------------------------------------|--------------------------------------|--|--|--|
| Technique                                              | Small Facilities<br>(<30 employees) | Medium Facilities<br>(> 31 and < 65 employees) | Large Facilities<br>(> 65 employees) |  |  |  |
| Conduct employee education                             | 21                                  | 22                                             | 30                                   |  |  |  |
| Establish preventive maintenance program               | 15                                  | 22                                             | 28                                   |  |  |  |
| Use specifically assigned personnel                    | 27                                  | 35                                             | 40                                   |  |  |  |
| Procedures subtotal                                    | 200                                 | 213                                            | 271                                  |  |  |  |
| Perform routine bath analysis                          | 34                                  | 33                                             | 41                                   |  |  |  |
| Maintain bath analysis logs                            | 33                                  | 33                                             | 39                                   |  |  |  |
| Use process baths to maximum                           | 29                                  | 30                                             | 31                                   |  |  |  |
| Have written procedures                                | 25                                  | 28                                             | 37                                   |  |  |  |
| F006 volume reduction subtotal                         | 58                                  | 88                                             | 86                                   |  |  |  |
| Sludge dewatering                                      | 28                                  | 47                                             | 50                                   |  |  |  |
| Closed loop recycling                                  | 16                                  | 15                                             | 10                                   |  |  |  |
| Use control method                                     | 6                                   | 14                                             | 10                                   |  |  |  |
| Inspections / maintenance subtotal                     | 60                                  | 66                                             | 73                                   |  |  |  |
| Perform regular maintenance of racks/barrels           | 26                                  | 24                                             | 29                                   |  |  |  |
| Pre-inspect parts                                      | 22                                  | 23                                             | 24                                   |  |  |  |
| Research / evaluations subtotal                        | 60                                  | 73                                             | 91                                   |  |  |  |
| Evaluation of recycling alternatives                   | 16                                  | 21                                             | 27                                   |  |  |  |
| Increase drain time                                    | 19                                  | 20                                             | 22                                   |  |  |  |
| Research of alternative plating technologies           | 13                                  | 18                                             | 21                                   |  |  |  |
| Elimination / Replacement / Substitutions subtotal     | 88                                  | 105                                            | 108                                  |  |  |  |
| Eliminate obsolete processes                           | 20                                  | 19                                             | 22                                   |  |  |  |
| Replace cyanide based plating                          | 14                                  | 21                                             | 23                                   |  |  |  |
| Eliminate plating service                              | 16                                  | 17                                             | 1                                    |  |  |  |

\* number of positive responses by facility

Table 9.0 summarizes the results of the responses to each of the 59 individual techniques.

|                                                                                                                                                               | Table 29. Pollu                 | tion Prevention                | Benefits by Techniq                               | ue    |                                                 |    |    |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|---------------------------------------------------|-------|-------------------------------------------------|----|----|-------|
| Technique                                                                                                                                                     | Number of<br>"Yes"<br>Responses | Number of<br>"No"<br>Responses | Number of<br>Manual Vs.<br>Automatic<br>Responses | 1 = l | P2 BENEFIT<br>1 = low success, 5 = high success |    |    | ccess |
|                                                                                                                                                               |                                 |                                |                                                   | 1     | 2                                               | 3  | 4  | 5     |
| Reduce Drag-out Losses                                                                                                                                        |                                 |                                |                                                   |       |                                                 |    |    |       |
| Using drag-out rinse tanks and<br>returning chemicals to the process<br>bath                                                                                  | 87                              | 94                             | Manual: 57<br>Automatic: 22                       | 3     | 4                                               | 17 | 20 | 27    |
| Using drip tanks and returning chemicals to the process bath                                                                                                  | 36                              | 145                            | Manual: 27<br>Automatic: 6                        | 3     | 0                                               | 10 | 8  | 6     |
| Reducing speed of rack/part withdrawal                                                                                                                        | 63                              | 118                            | Manual: 43<br>Automatic: 20                       | 5     | 9                                               | 20 | 11 | 6     |
| Allowing rack/part to drip over plating tank                                                                                                                  | 96                              | 85                             | Manual: 63<br>Automatic: 33                       | 3     | 10                                              | 33 | 19 | 15    |
| Using a drag-in/drag-out<br>arrangement (i.e., use of same<br>rinse tank before and after plating<br>also referred to as a double-dip or<br>double-use rinse) | 40                              | 141                            | Manual: 26<br>Automatic: 14                       | 3     | 2                                               | 8  | 6  | 10    |
| Fog or spray rinses installed over process bath                                                                                                               | 36                              | 145                            | Manual: 21<br>Automatic: 12                       | 1     | 2                                               | 6  | 9  | 7     |
| Air knives that blow off drag-out                                                                                                                             | 16                              | 165                            | Manual: 1<br>Automatic: 15                        | 1     | 1                                               | 3  | 7  | 3     |
| Drip shields between tanks                                                                                                                                    | 66                              | 115                            | Manual: 34<br>Automatic: 52                       | 3     | 5                                               | 18 | 15 | 16    |
| Lower bath concentration                                                                                                                                      | 35                              | 146                            | Not applicable                                    | 2     | 5                                               | 14 | 6  | 4     |
| Increasing solution temperature (reduces viscosity)                                                                                                           | 13                              | 168                            | Not applicable                                    | 4     | 0                                               | 4  | 4  | 0     |
| Using a wetting agent (reduces viscosity)                                                                                                                     | 48                              | 133                            | Not applicable                                    | 5     | 1                                               | 18 | 13 | 4     |
| Positioning work piece to minimize solution holdup                                                                                                            | 65                              | 116                            | Not applicable                                    | 2     | 2                                               | 17 | 13 | 20    |
| Other, specify                                                                                                                                                | 4                               | 3                              | Not applicable                                    | 0     | 0                                               | 0  | 1  | 2     |
| <b>Reduce Rinse Water Use</b>                                                                                                                                 |                                 |                                |                                                   |       |                                                 |    |    |       |
| Manually turning off rinse water when not in use                                                                                                              | 73                              | 108                            | Not applicable                                    | 4     | 8                                               | 20 | 10 | 20    |

| Table 29. Pollution Prevention Benefits by Technique                                        |                                 |                                |                                                   |                                               |   |    |       |    |
|---------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|---------------------------------------------------|-----------------------------------------------|---|----|-------|----|
| Technique                                                                                   | Number of<br>"Yes"<br>Responses | Number of<br>"No"<br>Responses | Number of<br>Manual Vs.<br>Automatic<br>Responses | P2 BENEFIT<br>1 = low success, 5 = high succe |   |    | ccess |    |
|                                                                                             |                                 |                                |                                                   | 1                                             | 2 | 3  | 4     | 5  |
| Conductivity or pH rinse controls                                                           | 22                              | 159                            | Not applicable                                    | 1                                             | 2 | 8  | 4     | 3  |
| Timer rinse controls                                                                        | 24                              | 157                            | Not applicable                                    | 1                                             | 4 | 3  | 8     | 5  |
| Flow restrictors                                                                            | 103                             | 78                             | Not applicable                                    | 1                                             | 3 | 17 | 26    | 21 |
| Counter current rinses                                                                      | 113                             | 68                             | Not applicable                                    | 0                                             | 3 | 13 | 26    | 33 |
| Spray rinses                                                                                | 59                              | 122                            | Not applicable                                    | 2                                             | 4 | 9  | 15    | 11 |
| Air agitation in rinse tanks                                                                | 73                              | 86                             | Not applicable                                    | 1                                             | 3 | 20 | 17    | 20 |
| Use flow meters/accumulators to<br>track water use at each rinse tank<br>or plating line    | 23                              | 136                            | Not applicable                                    | 1                                             | 0 | 8  | 3     | 5  |
| Reactive rinsing or cascade rinsing                                                         | 22                              | 136                            | Not applicable                                    | 1                                             | 1 | 2  | 5     | 9  |
| Other, specify                                                                              | 7                               | 4                              | Not applicable                                    | 0                                             | 0 | 0  | 1     | 2  |
| Various Operating Practices                                                                 |                                 |                                |                                                   |                                               | - |    |       |    |
| Training and Programs                                                                       |                                 |                                |                                                   |                                               |   |    |       |    |
| Established a formal policy<br>statement with regard to pollution<br>prevention and control | 60                              | 99                             | Not applicable                                    | 11                                            | 6 | 11 | 12    | 11 |
| Established a formal pollution prevention program                                           | 64                              | 95                             | Not applicable                                    | 7                                             | 6 | 23 | 6     | 12 |
| Conduct employee education for pollution prevention                                         | 73                              | 86                             | Not applicable                                    | 4                                             | 9 | 22 | 13    | 12 |
| Establish a preventive maintenance program for tanks                                        | 66                              | 93                             | Not applicable                                    | 2                                             | 6 | 22 | 14    | 13 |
| Use specifically assigned personnel for chemical additions                                  | 99                              | 60                             | Not applicable                                    | 2                                             | 6 | 12 | 24    | 34 |
| Procedures                                                                                  |                                 |                                |                                                   |                                               |   |    |       |    |
| Stricter conformance with Line<br>Preventive Maintenance Schedule                           | 31                              | 127                            | Not applicable                                    | 3                                             | 1 | 7  | 9     | 7  |
| Stricter conformance with SPC<br>Procedures                                                 | 26                              | 133                            | Not applicable                                    | 3                                             | 2 | 8  | 6     | 5  |
| Waste stream segregation of<br>contact and non contact<br>wastewater                        | 38                              | 121                            | Not applicable                                    | 0                                             | 1 | 8  | 8     | 16 |

|                                                                                                                                                                                                                 | Table 29. Pollu                 | tion Prevention                | Benefits by Techniq                               | ue                                          |   |          |    |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|---------------------------------------------------|---------------------------------------------|---|----------|----|----------|
| Technique                                                                                                                                                                                                       | Number of<br>"Yes"<br>Responses | Number of<br>"No"<br>Responses | Number of<br>Manual Vs.<br>Automatic<br>Responses | P2 BENEFIT<br>1 = low success, 5 = high suc |   | ccess    |    |          |
|                                                                                                                                                                                                                 |                                 |                                |                                                   | 1                                           | 2 | 3        | 4  | 5        |
| Strict chemical inventory control                                                                                                                                                                               | 59                              | 100                            | Not applicable                                    | 4                                           | 4 | 12       | 11 | 20       |
| Perform routine bath analyses                                                                                                                                                                                   | 99                              | 60                             | Not applicable                                    | 0                                           | 2 | 17       | 30 | 32       |
| Maintain bath analyses/addition logs                                                                                                                                                                            | 96                              | 63                             | Not applicable                                    | 2                                           | 6 | 24       | 19 | 28       |
| Have written procedures for bath make-up and additions                                                                                                                                                          | 83                              | 76                             | Not applicable                                    | 3                                           | 4 | 19       | 22 | 22       |
| Use process baths to maximum extent possible (no dump schedule)                                                                                                                                                 | 83                              | 76                             | Not applicable                                    | 0                                           | 3 | 13       | 24 | 26       |
| Remove anodes from bath when<br>they are idle (e.g., cadmium, zinc)                                                                                                                                             | 36                              | 123                            | Not applicable                                    | 2                                           | 1 | 9        | 6  | 11       |
| Regularly retrieve fallen<br>parts/racks from tanks                                                                                                                                                             | 80                              | 79                             | Not applicable                                    | 3                                           | 2 | 30       | 12 | 20       |
| F006 Volume Reduction Methods                                                                                                                                                                                   |                                 |                                |                                                   |                                             | 8 | <b>B</b> |    | <u>.</u> |
| Closed-loop recycling                                                                                                                                                                                           | 34                              | 124                            | Not applicable                                    | 2                                           | 0 | 1        | 3  | 9        |
| Use control method for adding water to process tanks                                                                                                                                                            | 29                              | 130                            | Not applicable                                    | 1                                           | 2 | 6        | 5  | 8        |
| Sludge dewatering (Vacuum filter,<br>Solid bowl centrifuge, Imperforate<br>basket centrifuge, belt filter press,<br>Recessed plate filter press, sludge<br>drying beds, sludge lagoons,<br>sludge dryers, etc.) | 113                             | 46                             | Not applicable                                    | 0                                           | 0 | 10       | 17 | 37       |
| Install overflow alarms on process tanks                                                                                                                                                                        | 19                              | 140                            | Not applicable                                    | 3                                           | 0 | 6        | 3  | 5        |
| Install other spill/leak detection system, specify                                                                                                                                                              | 15                              | 144                            | Not applicable                                    | 3                                           | 0 | 1        | 3  | 5        |
| Inspections / Maintenance                                                                                                                                                                                       |                                 |                                |                                                   |                                             | 8 | <b>B</b> |    | <u>.</u> |
| Perform regular maintenance of racks/barrels                                                                                                                                                                    | 73                              | 86                             | Not applicable                                    | 3                                           | 8 | 24       | 20 | 7        |
| Pre-inspect parts to prevent<br>processing of obvious rejects                                                                                                                                                   | 64                              | 95                             | Not applicable                                    | 1                                           | 7 | 14       | 16 | 15       |
| Waste Reduction Study conducted                                                                                                                                                                                 | 48                              | 111                            | Not applicable                                    | 2                                           | 5 | 14       | 14 | 7        |
| Research / Evaluation                                                                                                                                                                                           | -                               | -                              |                                                   |                                             | • | •        |    | •        |

|                                                                                              | Table 29. Pollu                 | tion Prevention                | Benefits by Techniq                               | ue  |                                              |    |    |       |
|----------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|---------------------------------------------------|-----|----------------------------------------------|----|----|-------|
| Technique                                                                                    | Number of<br>"Yes"<br>Responses | Number of<br>"No"<br>Responses | Number of<br>Manual Vs.<br>Automatic<br>Responses | 1 = | P2 BENEFIT<br>1 = low success, 5 = high succ |    |    | ccess |
|                                                                                              |                                 |                                |                                                   | 1   | 2                                            | 3  | 4  | 5     |
| Evaluation of recycling alternatives                                                         | 59                              | 100                            | Not applicable                                    | 4   | 7                                            | 16 | 13 | 8     |
| Increasing drain time over process tanks                                                     | 55                              | 104                            | Not applicable                                    | 4   | 7                                            | 16 | 13 | 8     |
| Research of alternative plating technologies                                                 | 51                              | 108                            | Not applicable                                    | 6   | 7                                            | 10 | 6  | 13    |
| Development of tracking system<br>for monitoring flow from different<br>areas                | 19                              | 140                            | Not applicable                                    | 4   | 0                                            | 7  | 1  | 3     |
| Monitoring of incoming water with strict control program                                     | 26                              | 133                            | Not applicable                                    | 3   | 0                                            | 4  | 6  | 4     |
| Two separate labs for process chemistry                                                      | 2                               | 157                            | Not applicable                                    | 0   | 0                                            | 1  | 1  | 0     |
| Elimination / Replacement /<br>Substitutions                                                 |                                 |                                |                                                   |     |                                              |    |    |       |
| Eliminate obsolete processes<br>and/or unused or infrequently used<br>processes              | 57                              | 102                            | Not applicable                                    | 1   | 2                                            | 16 | 14 | 14    |
| Replace cyanide-based plating solution with alkaline-based solutions                         | 56                              | 103                            | Not applicable                                    | 3   | 2                                            | 6  | 7  | 24    |
| Elimination of rinse waters to waste treatment (nickel, chrome)                              | 25                              | 134                            | Not applicable                                    | 3   | 2                                            | 4  | 5  | 3     |
| Substitution of chromate and dichromate sealer with non-chromate sealer                      | 2                               | 157                            | Not applicable                                    | 0   | 0                                            | 2  | 0  | 0     |
| Elimination of plating services<br>(cadmium, tin, nickel, copper,<br>brass, and hard chrome) | 48                              | 111                            | Not applicable                                    | 1   | 3                                            | 7  | 8  | 15    |
| Elimination of vapor degreasing                                                              | 46                              | 113                            | Not applicable                                    | 1   | 1                                            | 4  | 3  | 29    |
| Implementation of a multi-stage cyanide destruct system                                      | 30                              | 129                            | Not applicable                                    | 2   | 1                                            | 3  | 5  | 14    |
| Elimination of chelated cleaners                                                             | 34                              | 125                            | Not applicable                                    | 0   | 1                                            | 5  | 9  | 10    |
| Other, specify                                                                               | 5                               | 6                              | Not applicable                                    | 0   | 0                                            | 0  | 3  | 3     |

| Table 29. Pollution Prevention Benefits by Technique |                                 |                                |                                                   |                                                 |     |     |     |     |
|------------------------------------------------------|---------------------------------|--------------------------------|---------------------------------------------------|-------------------------------------------------|-----|-----|-----|-----|
| Technique                                            | Number of<br>"Yes"<br>Responses | Number of<br>"No"<br>Responses | Number of<br>Manual Vs.<br>Automatic<br>Responses | P2 BENEFIT<br>1 = low success, 5 = high success |     |     |     |     |
|                                                      |                                 |                                |                                                   | 1                                               | 2   | 3   | 4   | 5   |
| E - Additional                                       | 3                               | 156                            | Not applicable                                    | n/a                                             | n/a | n/a | n/a | n/a |

#### n. Waste Minimization Techniques by Generating Process

Table 30 summarizes the types of waste minimization techniques reported by facilities that conducted only one type of plating. The four processes were selected for analysis because they are most representative of the plating industry and the most problematic from a regulatory perspective. A handful of facilities only performed tin plating, bright dip, and sulfuric acid anodizing.

| Table 30.         Summary of Waste Minimization Techniques |        |        |        |      |         |  |  |
|------------------------------------------------------------|--------|--------|--------|------|---------|--|--|
| TECHNIQUE                                                  | NICKEL | COPPER | CHROME | ZINC | CADMIUM |  |  |
| Reduce drag-out losses                                     | 55     | 47     | 23     | 62   | 30      |  |  |
| Reduce rinse water use                                     | 67     | 52     | 25     | 78   | 36      |  |  |
| Training and programs subtotal                             | 53     | 41     | 21     | 78   | 28      |  |  |
| Procedures subtotal                                        | 52     | 43     | 20     | 55   | 26      |  |  |
| F006 volume reduction subtotal                             | 68     | 52     | 33     | 54   | 36      |  |  |
| Inspections / maintenance subtotal                         | 42     | 34     | 15     | 72   | 23      |  |  |
| Research / evaluations subtotal                            | 41     | 34     | 13     | 45   | 20      |  |  |
| Elimination / Replacement / Substitutions                  | 54     | 41     | 20     | 63   | 26      |  |  |
| Various operating practices<br>Total                       | 310    | 245    | 122    |      | 159     |  |  |

o. Impact of Waste Minimization Projects on Wastewater Discharge Rates [E2]

| Number of positive responses: | 63  |
|-------------------------------|-----|
| Number of negative responses: | 156 |

p. Recycle and Recovery Technologies [E3]

Table 31 summarizes the use of recycle and recovery technologies.

| Table 31. Summary of Recycling and Recovery Technologies |                              |                              |  |  |  |  |  |
|----------------------------------------------------------|------------------------------|------------------------------|--|--|--|--|--|
| TECHNIQUE                                                | Number of Positive Responses | Number of Negative Responses |  |  |  |  |  |
| Electrodialysis                                          | 7                            | 152                          |  |  |  |  |  |
| Electrowinning                                           | 26                           | 133                          |  |  |  |  |  |
| Evaporator                                               | 39                           | 120                          |  |  |  |  |  |
| Ion flotation                                            | 1                            | 158                          |  |  |  |  |  |
| Ion exchange                                             | 28                           | 131                          |  |  |  |  |  |
| Mesh pad mist eliminator/recycle                         | 15                           | 144                          |  |  |  |  |  |
| Reverse osmosis                                          | 8                            | 151                          |  |  |  |  |  |
| Ultrafiltration                                          | 5                            | 154                          |  |  |  |  |  |
| Other                                                    | 11                           | 2                            |  |  |  |  |  |

### q. Solution Maintenance Techniques [E4]

Table 32 summarizes the solution maintenance techniques.

| Table 32.         Summary of Solution Maintenance Techniques              |    |     |  |  |  |  |  |
|---------------------------------------------------------------------------|----|-----|--|--|--|--|--|
| TECHNIQUE         # of Positive Responses         # of Negative Responses |    |     |  |  |  |  |  |
| Acid retardation                                                          | 1  | 158 |  |  |  |  |  |
| Carbon treatment (batch)                                                  | 46 | 113 |  |  |  |  |  |
| Carbon treatment (continuous)                                             | 40 | 119 |  |  |  |  |  |

| Table 32. Summary of Solution Maintenance Techniques |                         |                         |  |  |  |  |
|------------------------------------------------------|-------------------------|-------------------------|--|--|--|--|
| TECHNIQUE                                            | # of Positive Responses | # of Negative Responses |  |  |  |  |
| Dummying of metal contaminants                       | 56                      | 103                     |  |  |  |  |
| Electrodialysis for inorganic contaminants           | 56                      | 155                     |  |  |  |  |
| Carbonate freezing                                   | 24                      | 135                     |  |  |  |  |
| Filtration, in-tank                                  | 53                      | 106                     |  |  |  |  |
| Filtration, external                                 | 51                      | 108                     |  |  |  |  |
| High pH treatment                                    | 16                      | 143                     |  |  |  |  |
| Precipitation                                        | 20                      | 139                     |  |  |  |  |
| Liquid/ Liquid extraction                            | 2                       | 157                     |  |  |  |  |
| Microfiltration                                      | 1                       | 158                     |  |  |  |  |
| Ultrafiltration                                      | 1                       | 158                     |  |  |  |  |
| Other, specify                                       | 0                       | 1                       |  |  |  |  |

Appendix A: Summary of the 10 Issue Areas Identified for the Metal Finishing Sector <u>Issue 1.</u> Operational Flexibility

Industry performance leaders would receive operational flexibility (i.e., less burdensome permitting, monitoring, and reporting requirements) in recognition of their good performance and as an incentive to seek the ambitious performance goals.

Issue 2: Waste Minimization and Recovery

The first phase of this project was a bench marking analysis of F006 constituents, using national and regional sampling data. The data generated in the bench marking study will be used by the RCRA Project Team to develop and assess options for reducing barriers to pollution prevention and on-site and off-site metal recovery requirements.

Issue 3: Reporting and Right-to-Know

This project applies business process reengineering techniques to examine federal, state, and local reporting requirements for metal finishers across all environmental media.

**Issue 4:** Compliance Tools and Assistance

This project is designed to overcome barriers to improved compliance and pollution prevention by combining pollution prevention assistance and enforcement relief policies as an incentive for improved environmental performance by metal finishers.

Issue 5: Research and Technology

The National Metal Finishing Environmental R&D Plan is a customer-oriented R&D strategy for risk characterization, exposure assessment, and technology transfer for metal finishers, communities, and other stakeholders.

Issue 6: Industrial Pretreatment

The POTW Pretreatment Project is designed to identify ways to improve the capabilities of POTW manage their industrial users by reducing mass pollutant loadings without limiting industry activity, and to provide the most effective POTW with increased managerial flexibility to achieve higher environmental quality at lower cost.

**Issue 7:** Environmentally Responsible Site Transition

This project develops a government sponsored "exit strategy" for metal finishers who wish to get out of the business that reduces future contaminated "orphan industrial sites."

Issue 8: Enforcement for Chronic Non-Complier

This project develops a sector-based, targeted enforcement program for government at all level to identify chronic non-complier and take appropriate action against them.

Issue 9: Access to Capital

This project focuses on developing innovative approaches for improving access to capital for metal finishers and electronics firms.

# Appendix B: F006 Management Contained in EPA's 1995 Biennial Report Database

**Waste Management Facilities:** This appendix lists the names of hazardous waste landfill facilities contained in EPA's 1995 Biennial Report that reported accepting and /or managing F006 waste. The table includes the quantities of F006 waste managed by each facility, the facility's EPA ID, and the number of shipments the facility received.

### Table 1: F006 Waste Managed in Landfills

Number of RCRA large quantity generators (greater than 1000kg/month) who sent F006 waste off-site to a RCRA landfill in 1995 = 283

Volume of F006 generated on-site and shipped off-site to a landfill = 80,298.370 tons

Volume of F006 generated on-site and managed in a landfill on-site = 18,782.832 tons (2 facilities, not including TSDs) Total volume generated and managed in landfills = 99,081.202 tons

| Number EPA ID Company |                                       |                                             | Qty "Generated"<br>&<br>Managed On-site | Qty Rcvd &<br>Managed<br>On-site | # of<br>Shpmts<br>Rcvd | GM/WR<br>Form |
|-----------------------|---------------------------------------|---------------------------------------------|-----------------------------------------|----------------------------------|------------------------|---------------|
| 1                     | ALD000622464 Chemical Waste Managemer |                                             |                                         | 496.179                          | 15                     | WR            |
| 2                     | CAD000633164                          | Laidlaw Environmental Services, Inc.        |                                         | 94.800                           | 4                      | WR            |
| 3                     | CAT000646117                          | Chemical Waste Management, Inc.             | 260.000                                 |                                  |                        | GM            |
| 4                     | COD991300484                          | Highway 36 Land Development Co.             |                                         | 4,319.438                        | 7                      | GM,WR         |
| 5                     | IDD073114654                          | Envirosafe Services of Idaho                |                                         | 138.955                          | 20                     | WR            |
| 6                     | ILD000805812                          | Peoria Disposal Co.                         | 5,208.628                               |                                  |                        | GM            |
| 7                     | IND016584641                          | Midwest Steel Division                      | 17,308.400                              |                                  |                        | GM            |
| 8                     | IND078911146                          | Chemical Waste Management, Inc.             | 118.300                                 | 3,015.950                        | 34                     | GM,WR         |
| 9                     | IND980503890                          | Heritage Environmental Services, Inc.       |                                         | 68,213.625                       | 1                      | WR            |
| 10                    | KSD057889313                          | Ashland Chemical Co.                        |                                         | 1.800                            | 1                      | WR            |
| 11                    | LAD000777201                          | Chemical Waste Management, Inc.             |                                         | 44,939.950                       | 45                     | WR            |
| 12                    | MID000724831                          | Michigan Disposal Waste Treatment           | 43,259.000                              |                                  |                        | GM            |
| 13                    | MID048090633                          | Wayne Disposal Site #2 Landfill             |                                         | 45,070.380                       | 9                      | WR            |
| 14                    | NJD002385730                          | E. I. DuPont de Nemours & Co. Inc.          | 10,030.000                              |                                  |                        | GM            |
| 15                    | NYD049836679                          | CWM Chemical Services                       |                                         | 60.170                           | 4                      | WR            |
| 16                    | OHD045243706                          | Envirosafe Services of Ohio Inc.            | 236.490                                 | 13,558.665                       | 54                     | GM,WR         |
| 17                    | OKD065438376                          | U.S. Pollution Control Inc.                 |                                         | 3,403.746                        | 17                     | WR            |
| 18                    | ORD089452353                          | Chemical Waste Management, Inc.             | 121.602                                 | 3,810,086.0                      | 20                     | GM,WR         |
| 19                    | SCD070375985                          | Laidlaw Env. Svs. of SC Inc.                | 0.530                                   | 2,843.1                          | 491                    | GM,WR         |
| 20                    | TND980847024                          | Excel TSD Inc.                              | 1.310                                   |                                  |                        | GM            |
| 21                    | TXD069452340                          | Texas Ecologists, Inc.                      |                                         | 1,800.2                          | 3                      | WR            |
| 22                    | UTD982598898                          | Envirocare of Utah                          |                                         | 4,431.8                          | 7                      | WR            |
| 23                    | UTD991301748                          | USPCI Grassy Mountain Facility              |                                         | 6,859.9                          | 7                      | WR            |
| 24                    | WAD041337130                          | Boeing - Auburn                             |                                         | 115,193.0                        | 2                      | WR            |
| 25                    | WAD041585464                          | Boeing Commercial Airplane Group<br>Everett |                                         |                                  |                        | WR            |
|                       |                                       | Totals                                      | 78,018.7                                | 47,026.0                         | 2                      |               |

GM = Reported on Biennial Report GM form: identifies generators who manage F006 in an onsite landfill.

WR = Reported on WR form: identifies off-site facilities that receive and manage F006 in a landfill.

Table 2 lists recycling facilities contained in EPA's 1995 Biennial Report that reported accepting and/or managing F006 waste in 1995. The table includes the quantities of F006 waste managed by each facility, the facility's EPA ID, the number of shipments the facility received, recovery system used, and a system description.

## Table 2: F006 Waste Managed by Metals Recovery

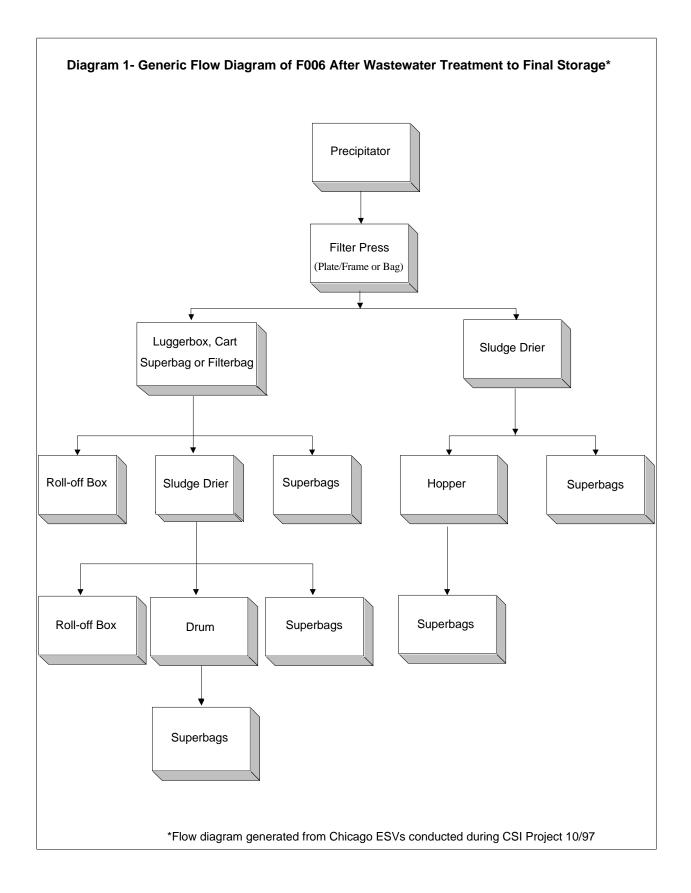
Number of generators who send F006 waste off-site to metals recovery = 824 Volume of F006 generated on-site and shipped off-site for metals recovery = 64,670.462 tons Volume of F006 generated on-site and managed on-site by metals recovery = 217,292.304 tons (9 facilities) Therefore, total volume of F006 generated and managed by metals recovery = 281,962.766 tons

Quantities and Number of Facilities/Streams that Shipped F006 Off-site for Metals Recovery

| System | System Description                                    | Qty Shipped Off-site | # of Facilities | # of Streams |
|--------|-------------------------------------------------------|----------------------|-----------------|--------------|
| M011   | High temperature metals recovery                      | 18,252.113           | 159             | 179          |
| M012   | Retorting                                             | 295.301              | 4               | 12           |
| M013   | Secondary smelting                                    | 11,958.071           | 74              | 89           |
| M014   | Other metals recovery for reuse (iron exchange, etc.) | 16,707.303           | 278             | 320          |
| M019   | Metals recovery - type unknown                        | 17,457.674           | 309             | 370          |
|        | Total                                                 | s 64,670.462         | 824             | 970          |

#### Metals Recovery Facilities that Accept/Manage F006 Waste

|     |                |                                  | Qty Generated & | Qty Rcvd &      | # of        | Recovery | System                          | GM/WR |
|-----|----------------|----------------------------------|-----------------|-----------------|-------------|----------|---------------------------------|-------|
| Num | ber EPA ID Com | ipany                            | Managed On-site | Managed On-site | Shpmts Rcvd | System   | Description                     | Form  |
| 1   | CAD981695729   | Pacific Circuit Services         | 74.000          |                 |             | M014     | Other metals recovery for reuse | GM    |
| 2   | CAT000612150   | Engelhard West, Inc.             | 25.314          |                 |             | M011     | High temp. metals recovery      | GM    |
| 3   | COD082657420   | Schlage Lock Company             | 0.616           |                 |             | M014     | Other metals recovery for reuse | GM    |
| 4   | ILD005087630   | United Refining & Smelting Co.   |                 | 87.186          | 2           | M011     | High temp. metals recovery      | WR    |
| 5   | ILD984766279   | Hydromet Environmental Inc.      |                 | 138.880         | 3           | M014     | Other metals recovery for reuse | WR    |
| 6   | LAD058472721   | Amax Metals Recovery Inc.        |                 | 27.300          | 3           | M014     | Other metals recovery for reuse | WR    |
| 7   | MID047153077   | Production Plated Plastics, Inc. | 192,351.977     |                 |             | M014     | Other metals recovery for reuse | GM    |
| 8   | MID981099435   | Lacks - Airplane                 | 24,603.837      |                 |             | M014     | Other metals recovery for reuse | GM    |
| 9   | NYD001325661   | Lea Ronal Inc.                   |                 | 0.864           | 1           | M011     | High temp. metals recovery      | WR    |
| 10  | NYD086225596   | AT&T Nassau Metals               |                 | 0.741           | 4           | M011     | High temp. metals recovery      | WR    |
| 11  | OHD061614673   | Dayton Water Systems             |                 | 57.700          | 17          | M014     | Other metals recovery for reuse | WR    |
| 12  | PAD087561015   | Inmetco Inc.                     |                 | 4,839.448       | 97          | M011     | High temp. metals recovery      | WR    |
| 13  | RID062309299   | Hallmark Healy Group Inc.        | 207.745         |                 |             | M013     | Secondary smelting              | GM    |
| 14  | RID063890214   | Boliden Metech Inc.              |                 | 95.120          | 3           | M014     | Other metals recovery for reuse | WR    |
| 15  | RID981886104   | Gannon & Scott Inc.              |                 | 1.455           | 4           | M011     | High temp. metals recovery      | WR    |
| 16  | TXD008117186   | Encycle/Texas, Inc.              |                 | 7,938.630       | 244         | M014     | Other metals recovery for reuse | WR    |
| 17  | TXD072181969   | Metal Coatings Corp.             | 5.930           |                 |             | M011     | High temp. metals recovery      | GM    |
| 18  | TXD981514383   | Alpha Omega Recycling Inc.       | 15.460          | 1,028.440       | 67          | M014     | Other metals recovery for reuse | GM,WR |
| 19  | WID006129522   | Krueger International            | 7.425           |                 |             | M014     | Other metals recovery for reuse | GM    |
|     |                | Totals                           | 217,292.304     | 14,215.763      | 445         |          |                                 |       |


GM = Reported on Biennial Report GM form: identifies generators who manage F006 in an onsite landfill.

WR = Reported on WR form: identifies off-site facilities that receive and manage F006 in a landfill.

Appendix C: Observed F006 Handling Practices at Metal Finishing Facilities and List of Worker Health and Safety Regulations

# **Description of F006 Generation and Handling at Metal Finishing Facilities**

Diagram 1 presents a generic F006 waste generation and handling process. Electroplating process wastewaters are treated through multiple processes to form a slurry/precipitate. The slurry/precipitate is sent to a filter press where excess water is separated by the filter press. The moist F006 drops from the filter press to a cart, supersack, roll-off box or to a sludge drier. When used a sludge drier reduces the amount of water in the sludge and reduces its volume. After drying or in the moist state, the F006 is either taken away by a recycler or hazardous materials handler to its final destination.



## Health and Safety Regulations and Guidelines

This section provides a list of worker and safety regulations, policies, guides and operating procedures which may apply to on-site and off-site management of F006 waste. All of OSHA General Industry Standards are applicable. In addition, OSHA Construction Industry Standards would be applicable to construction activities at these facilities.

| Table 1 - List of Regulations, Policies, and Guidelines |                                                            |                                         |  |  |
|---------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|--|--|
| Agency/Organization                                     | Title of Regulation                                        | Location of Regulation                  |  |  |
| EPA                                                     | Personnel Training                                         | 40 CFR §262.34(a)(4) and 40 CFR §265.16 |  |  |
|                                                         | Preparedness and Prevention                                | 40 CFR §265, Subpart C                  |  |  |
|                                                         | Contingency Plan and Emergency Procedures                  | 40 CFR §265, Subpart D                  |  |  |
|                                                         | Use and Management of Containers                           | 40 CFR §265, Subpart I                  |  |  |
|                                                         | Best Management Practices for Pollutant<br>Dischargers     | 40 CFR §125.104                         |  |  |
| OSHA                                                    | Walking-Working Surfaces                                   | 29 CFR §1910.22                         |  |  |
|                                                         | Guarding floor & wall openings & holes                     | 29 CFR §1910.23                         |  |  |
|                                                         | Fixed Industrial Stairs                                    | 29 CFR §1910.24                         |  |  |
|                                                         | Fixed Ladders                                              | 29 CFR §1910.27                         |  |  |
|                                                         | Scaffolds                                                  | 29 CFR §1910.28                         |  |  |
|                                                         | Means of Egress                                            | 29 CFR §1910.37                         |  |  |
|                                                         | Emergency Action Plan Implementation                       | 29 CFR §1910.38(a)                      |  |  |
|                                                         | Fire Prevention Plan Implementation                        | 29 CFR §1910.38(b)                      |  |  |
|                                                         | Powered Platform Operation                                 | 29 CFR §1910.66                         |  |  |
|                                                         | Ventilation                                                | 29 CFR §1910.94                         |  |  |
|                                                         | Hearing Conservation                                       |                                         |  |  |
|                                                         | Flammable and Combustible Liquids                          | 29 CFR §1910.106                        |  |  |
|                                                         | Dip Tanks Containing Flammable or Combustible<br>Liquids   | 29 CFR §1910.108                        |  |  |
|                                                         | Process Safety Management of Highly Hazardous<br>Chemicals | 29 CFR §1910.119                        |  |  |
| OSHA (cont.)                                            | Hazardous Waste Operations (HAZWOPER)<br>Training          | 29 CFR §1910.120                        |  |  |
|                                                         | Personal Protective Equipment                              | 29 CFR §1910.132                        |  |  |
|                                                         | Eye & Face Protection                                      | 29 CFR §1910.133                        |  |  |
|                                                         | Respirator Requirements                                    | 29 CFR §1910.134                        |  |  |

| Table 1 - List of Regulations, Policies, and Guidelines |                                                              |                                                   |  |  |
|---------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|--|--|
| Agency/Organization                                     | Location of Regulation                                       |                                                   |  |  |
|                                                         | Head Protection                                              | 29 CFR §1910.135                                  |  |  |
|                                                         | Electrical Protective Devices                                | 29 CFR §1910.137                                  |  |  |
|                                                         | Sanitation                                                   | 29 CFR §1910.141                                  |  |  |
|                                                         | Confined Space                                               | 29 CFR §1910.146                                  |  |  |
|                                                         | Lockout/Tagout                                               | 29 CFR §1910.147                                  |  |  |
|                                                         | Medical Services & First Aid                                 | 29 CFR §1910.151                                  |  |  |
|                                                         | Fire Extinguisher Use                                        | 29 CFR §1910.157                                  |  |  |
|                                                         | Fixed Extinguishing Systems                                  | 29 CFR §1910.160                                  |  |  |
|                                                         | Air Receivers                                                | 29 CFR §1910.169                                  |  |  |
|                                                         | Materials Handling                                           | 29 CFR §1910.176                                  |  |  |
|                                                         | Powered Industrial Trucks (Forklift Operations)              | 29 CFR §1910.178                                  |  |  |
|                                                         | Overhead and Gantry Cranes                                   | 29 CFR §1910.179                                  |  |  |
|                                                         | Machines, General Requirements                               | 29 CFR §1910.212                                  |  |  |
|                                                         | Mechanical Power Presses                                     | 29 CFR §1910.217                                  |  |  |
|                                                         | Hand and Portable Powered Tools and Equipment,<br>General    | 29 CFR §1910.242                                  |  |  |
|                                                         | Welding, Cutting, Brazing - Definitions                      | 29 CFR §1910.251                                  |  |  |
|                                                         | Welding, Cutting, Brazing - General Requirements             | 29 CFR §1910.252                                  |  |  |
|                                                         | Electrical Systems                                           | 29 CFR §1910.301                                  |  |  |
|                                                         | Air Contaminants (PELs)                                      | 29 CFR §1910.1000                                 |  |  |
|                                                         | Inorganic Arsenic                                            | 29 CFR §1910.1018                                 |  |  |
|                                                         | Lead                                                         | 29 CFR §1910.1025                                 |  |  |
|                                                         | Cadmium                                                      | 29 CFR §1910.1027                                 |  |  |
|                                                         | Hazard Communication                                         | 29 CFR §1910.1200                                 |  |  |
| OSHA (cont.)                                            | Occupational Exposure to Hazardous Chemicals in Laboratories | 29 CFR §1910.1450                                 |  |  |
| DOT                                                     | HAZMAT Transport Training                                    | 49 CFR §173                                       |  |  |
| ACGIH*                                                  | Threshold Limit Values (TLVs)                                | <u>Guidelines only</u> in "1996<br>TLVs and BEIs" |  |  |

| *ACGIH (TLVs) are not legally enforceable |
|-------------------------------------------|
|-------------------------------------------|

# F006 Handling Practices That May be Used to Minimize Potential Hazards

Table 2 summarizes F006 handling practices observed at Milwaukee, Chicago, and Phoenix metal finishing facilities. This table represents observed practices not recommended best management practices.

| Table 2 - F006 Handling Activities Observed in Regional Benchmarking Study                 |                                                                                                                                                  |                                                                                                                                                |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Work Activity                                                                              | Potential Hazard                                                                                                                                 | Hazard Control Method                                                                                                                          |  |  |
| Paddling wet F006 sludge cake<br>from the filter press into a<br>lugger box, cart, or drum | Skin exposure to sludge,<br>ingestion hazard, Physical body<br>damage, slip hazard, possible<br>dust hazard                                      | Personal Protective Equipment (eye<br>protection, gloves, respirator, non slip boots),<br>ergonomics Training                                  |  |  |
| Replacing worn or damaged filter cloths in the filter press.                               | Skin exposure to sludge,<br>ingestion hazard, Physical<br>damage to body appendages if<br>press is activated                                     | Personal Protective Equipment (eye<br>protection, gloves, respirator), Training,<br>Means of locking out filter press                          |  |  |
| Shoveling dried F006 sludge<br>into supersacks, luggerboxes,<br>or drums.                  | Inhalation of metal dust<br>particles, Skin exposure to dust,<br>ingestion hazard, Physical lifting<br>hazards, confined space entry             | Personal Protective Equipment (eye<br>protection, gloves, respirator), Training on<br>lifting                                                  |  |  |
| Shoveling dried F006 sludge into a roll-off box                                            | Inhalation of metal dust<br>particles, Skin exposure to dust,<br>ingestion hazard, Physical lifting<br>hazards                                   | Personal Protective Equipment (eye<br>protection, gloves, respirator), ergonomic<br>training on lifting activities                             |  |  |
| Manually moving cart or<br>lugger box to supersack or<br>roll-off box                      | Inhalation of metal dust, skin<br>exposure, ingestion hazard,<br>Physical hazard                                                                 | Personal Protective Equipment (eye<br>protection, gloves, respirator), ergonomic<br>training                                                   |  |  |
| Operation of overhead crane to<br>transport cart or lugger box to<br>roll-off box          | Physical hazard of falling objects,<br>Crane failure, Inhalation of metal<br>dust                                                                | Personal Protective Equipment<br>Training on crane operation, crane inspection<br>program                                                      |  |  |
| Opening/closing a roll-off box<br>manually or with a forklift                              | Inhalation of metal dust particles,<br>Skin exposure to dust, ingestion<br>hazard, Forklift operation safety<br>hazards, Physical lifting damage | Forklift Training, Personal Protective<br>Equipment, Standard Operating Procedures<br>(SOPs)                                                   |  |  |
| Changing the filter to the sludge drier.                                                   | Inhalation of metal dust particles,<br>Skin exposure to dust, ingestion<br>hazard, drier lock-out                                                | Personal Protective Equipment (eye protection,<br>gloves, respirator), Training, means of locking<br>out drier to prevent accidental operation |  |  |
| Any work activity in the sludge drier room.                                                | Inhalation of metal dust particles,<br>Skin exposure to dust, ingestion<br>hazard, noise exposure, eye<br>hazard                                 | Personal Protective Equipment (respirator, eye protection, hearing protection)                                                                 |  |  |
| Sampling the F006 sludge (wet or dry)                                                      | Inhalation of metal dust particles,<br>Skin exposure to dust, ingestion<br>hazard                                                                | Personal Protective Equipment (eye protection, gloves, respirator)                                                                             |  |  |

| Work Activity                                                    | <b>Potential Hazard</b>                                                                                                                                                                                                                          | Hazard Control Method                                                                                      |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Housekeeping<br>(i.e., cleaning roll-off box)                    | Inhalation of metal dust particles,<br>Skin exposure to sludge or dust,<br>ingestion hazard, Physical lifting<br>hazards, Slip/trip/fall hazards,<br>Discharge of F006 while<br>cleaning the inside of the roll-off<br>box, confined space entry | Personal Protective Equipment (eye protection,<br>gloves, respirator)<br>Means of locking-out Filter press |
| Any work activity in noisy areas<br>(wastewater treatment pumps) | Noise exposure                                                                                                                                                                                                                                   | Personal Protective Equipment (hearing protection)                                                         |
| Forklift operation a lugger box, drum, or bag.                   | Forklift operation safety hazards                                                                                                                                                                                                                | Forklift Training, Personal Protective<br>Equipment (respirator), Standard Operating<br>Procedures (SOPs)  |

"Wet" sludge as the term is used here is that sludge produced after the filter press which constitutes about 25-60 % solids. "Dry" sludge is produced by the sludge drier and constitutes about 90% solids.

## **Personal Protective Equipment Guidance**

The National Institute for Occupational Safety and Health (NIOSH) is the government agency responsible for performing health and safety studies and making health and safety recommendations. NIOSH has recommended personal protective equipment and sanitary measures for handling specific chemicals and substances. Table 3 is extracted from the NIOSH "Pocket Guide to Chemical Hazards" recommending protective equipment and sanitary measures for specific chemicals and substances commonly found in F006 waste. This is not an all inclusive list, for example, respirators were not addressed. These recommendations supplement general work practices (e.g., no eating, drinking, or smoking where chemicals are used.)

| Table 3 - NIOSH Recommended Personal Protection and Sanitation |                      |                     |                                   |                          | )n                  |                         |
|----------------------------------------------------------------|----------------------|---------------------|-----------------------------------|--------------------------|---------------------|-------------------------|
| Contaminant                                                    | Skin:                | Eyes:               | Wash Skin:                        | Remove<br>Clothing:      | Change<br>Clothing: | Provide:                |
| Aluminum                                                       | N.R.                 | N.R.                | N.R.                              | N.R.                     | N.R.                |                         |
| Antimony                                                       | Prevent skin contact | Prevent eye contact | When contaminated                 | When wet or contaminated | Daily               |                         |
| Arsenic                                                        | Prevent skin contact | Prevent eye contact | When<br>contaminated<br>and daily | When wet or contaminated | Daily               | Eyewash,<br>Quickdrench |
| Barium<br>chloride/nitrate<br>(ASRA)                           | Prevent skin contact | Prevent eye contact | When<br>contaminated              | When wet or contaminated | Daily               |                         |
| Beryllium                                                      | Prevent skin contact | Prevent eye contact | Daily                             | When wet or contaminated | Daily               | Eyewash                 |

| Contaminant                                               | Skin:                   | Eyes:               | Wash Skin:                     | Remove<br>Clothing:      | Change<br>Clothing: | Provide:                |
|-----------------------------------------------------------|-------------------------|---------------------|--------------------------------|--------------------------|---------------------|-------------------------|
| Bismuth as<br>telluride doped<br>with selenium<br>sulfide | Prevent skin<br>contact | Prevent eye contact | When<br>contaminated           | When wet or contaminated | N.R.                | Eyewash,<br>Quickdrench |
| Cadmium                                                   | N.R.                    | N.R.                | Daily                          | N.R.                     | Daily               |                         |
| Chlorine                                                  | Frostbite               | Frostbite           | N.R.                           | N.R.                     | N.R.                | Frostbite protection    |
| Chromium                                                  | N.R.                    | N.R.                | N.R.                           | N.R.                     | N.R.                |                         |
| Chromium III                                              | Prevent skin contact    | Prevent eye contact | When contaminated              | When wet or contaminated | N.R.                |                         |
| Cobalt                                                    | Prevent skin contact    | N.R.                | When contaminated              | When wet or contaminated | Daily               |                         |
| Copper                                                    | Prevent skin contact    | Prevent eye contact | When contaminated              | When wet or contaminated | Daily               |                         |
| Cyanide                                                   | Prevent skin contact    | Prevent eye contact | When contaminated              | When wet or contaminated | Daily               |                         |
| Iron                                                      | N.R.                    | N.R.                | N.R.                           | N.R.                     | N.R.                |                         |
| Lead                                                      | Prevent skin contact    | Prevent eye contact | Daily                          | When wet or contaminated | Daily               |                         |
| Manganese                                                 | N.R.                    | N.R.                | N.R.                           | N.R.                     | N.R.                |                         |
| Mercury                                                   | Prevent skin contact    | N.R.                | When contaminated              | When wet or contaminated | Daily               |                         |
| Nickel                                                    | Preven skin<br>contact  | N.R.                | When<br>contaminated/<br>daily | When wet or contaminated | Daily               |                         |
| Platinum                                                  | N.R.                    | N.R.                | N.R.                           | N.R.                     | Daily               |                         |
| Platinum<br>(soluble salts)                               | Prevent skin contact    | Prevent eye contact | When contaminated              | When wet or contaminated | Daily               |                         |
| Selenium                                                  | Prevent skin contact    | N.R.                | When contaminated              | When wet or contaminated | N.R.                |                         |
| Silver                                                    | Prevent skin contact    | Prevent eye contact | When contaminated              | When wet or contaminated | Daily               |                         |
| Sodium<br>hydroxide                                       | Prevent skin contact    | Prevent eye contact | When contaminated              | When wet or contaminated | Daily               | Eyewash,<br>Quickdrench |
| Sulfur dioxide                                            | Frostbite               | Frostbite           | N.R.                           | When wet or contaminated | N.R.                | Frostbite protection    |
| Tin                                                       | N.R.                    | N.R.                | N.R.                           | N.R.                     | N.R.                |                         |

| Contaminant                                                                                                           | Skin:                | Eyes:               | Wash Skin:        | Remove<br>Clothing:      | Change<br>Clothing: | Provide: |
|-----------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-------------------|--------------------------|---------------------|----------|
| Vanadium                                                                                                              | Prevent skin contact | Prevent eye contact | When contaminated | When wet or contaminated | Daily               |          |
| Zinc                                                                                                                  | N.R.                 | N.R.                | N.R.              | N.R.                     | N.R.                |          |
| Notes: Skin - Recommends the need for personal protective equipment<br>Eyes - Recommends the need for eye protection. |                      |                     |                   |                          |                     |          |

Wash skin - Recommends when workers should wash the spilled chemical from the body in addition to normal washing.

Remove - Advises workers when to remove clothing that has accidentally become wet or significantly contaminated. Change - Recommends whether the routine changing of clothing is needed.

Provide - Recommends the need for eyewash fountains and/or quick drench facilities.

These recommendations supplement general work practices (e.g., no eating, drinking, or smoking where chemicals are used.)

N.R. - No recommendation specified

## References

- ACGIH. 1996 Threshold Limit Values and Biological Exposure Indices for Chemical Substances and Physical Agents. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 1996.
- Cushnie, Jr., George. *Pollution Prevention and Control Technology for Plating Operations*. Ann Arbor, MI: National Center for Manufacturing Sciences, 1994.
- EPA. Development Document for Existing Source Pretreatment Standards for the Electroplating Point Source Category. EPA 440/1-79/003, Washington, D.C.: Environmental Protection Agency, August 1979.
- NIOSH. *NIOSH Pocket Guide to Chemical Hazards*. DHHS (NIOSH) Publication No. 94-116. Washington, D.C.: U.S. Government Printing Office, 1997.
- OSHA Regulations (Standards 29 CFR) Part 1910 Occupational Safety and Health Standards, http://www.osha-slc.gov/OshStd\_toc/OSHA\_Std\_toc\_1910.html

Appendix D: Checklist Used to Identify Pollution Prevention Technologiesat Metal Finishing Facilities

| P2 Technology                                                                            |  | Comment |
|------------------------------------------------------------------------------------------|--|---------|
| 1. SPENT PLATING SOLUTIONS                                                               |  |         |
| General Bath Life Extension                                                              |  |         |
| • Filtration                                                                             |  |         |
| Carbon Treatment                                                                         |  |         |
| • Replenishment                                                                          |  |         |
| Purified Water                                                                           |  |         |
| Electrolytic Dummying                                                                    |  |         |
| Cyanide Bath Carbonate Freezing                                                          |  |         |
| Precipitation                                                                            |  |         |
| Monitoring                                                                               |  |         |
| • Housekeeping                                                                           |  |         |
| • Drag-in Reduction                                                                      |  |         |
| Purer Anodes and Bags                                                                    |  |         |
| Ventilation/Exhaust Systems                                                              |  |         |
| Hexavalent Chrome Alternatives<br>Trivalent chrome<br>Non-chrome conversion coatings     |  |         |
| Nonchelated Process Chemistries<br>Continuous filtration                                 |  |         |
| Non-cyanide Process Chemicals                                                            |  |         |
| Solvent Degreasing Alternatives<br>Hot alkaline cleaning<br>Electrocurrent<br>Ultrasonic |  |         |
| Alkaline Cleaners<br>Filtration (Micro/Ultra)<br>Skimming<br>Coalescer                   |  |         |
| Caustic Etch Solution Regeneration                                                       |  |         |
| Acid Purification<br>Ion Exchange                                                        |  |         |
| 2. DRAG-OUT REDUCTION                                                                    |  |         |
| Process Bath Operating Concentration     and Temperature                                 |  |         |
| Wetting Agents                                                                           |  |         |

| P2 Tec | hnology                                   | 1 | Comment |
|--------|-------------------------------------------|---|---------|
| •      | Workpiece Positioning                     |   |         |
| •      | Withdrawal and Drainage Time              |   |         |
| •      | Air Knives                                |   |         |
| •      | Spray or Fog Rinses                       |   |         |
| •      | Plating Baths                             |   |         |
| •      | Drainage Boards                           |   |         |
| •      | Drag-Out Tanks                            |   |         |
| 3. DR  | AG-OUT RECOVERY                           | - |         |
| •      | Evaporation                               |   |         |
| •      | Ion Exchange                              |   |         |
| •      | Electrowinning                            |   |         |
| •      | Electrodialysis                           |   |         |
| •      | Reverse Osmosis                           |   |         |
| •      | Meshpad Mist Eliminators                  |   |         |
| 4. RIN | SE WATER                                  |   |         |
| Improv | ed Rinsing Efficiency                     |   |         |
| •      | Spray Rinse/Rinse Water Agitation         |   |         |
| •      | Increased Contact Time/Multiple<br>Rinses |   |         |
| •      | Countercurrent Rinsing                    |   |         |
| Flow C | ontrols                                   |   |         |
| •      | Flow Restrictors                          |   |         |
| •      | Conductivity-Actuated Flow Control        |   |         |
| Recycl | ing/Recovery                              |   |         |
| •      | Rinse Water                               |   |         |
| •      | Spent Process Baths                       |   |         |
| •      | Solvents                                  |   |         |

Appendix E: Laboratory Analysis Information: Constituents, Methods, and Detection Limits Used in the Benchmarking Studies

| Table 1. Volatile Organic Target Analytes |                                |  |  |  |
|-------------------------------------------|--------------------------------|--|--|--|
| Method 8260A                              |                                |  |  |  |
| CONSTITUENT                               | TARGET DETECTION LIMIT ( g/Kg) |  |  |  |
| Chloromethane                             | 5                              |  |  |  |
| Vinyl Chloride                            | 5                              |  |  |  |
| Bromomethane                              | 5                              |  |  |  |
| Chloroethane                              | 10                             |  |  |  |
| Trichlorofluoromethane                    | 5                              |  |  |  |
| Acetone                                   | 10                             |  |  |  |
| 2-Chloroethyl vinyl ether                 | 20                             |  |  |  |
| 1,1-Dichloroethene                        | 5                              |  |  |  |
| Methylene Chloride                        | 5                              |  |  |  |
| Carbon Disulfide                          | 5                              |  |  |  |
| Vinyl Acetate                             | 10                             |  |  |  |
| 1,1-Dichloroethane                        | 5                              |  |  |  |
| 2-Butanone                                | 10                             |  |  |  |
| trans-1,2-Dichloroethene                  | 5                              |  |  |  |
| cis-1,2-Dichloroethene                    | 5                              |  |  |  |
| Chloroform                                | 5                              |  |  |  |
| 1,1,1-Trichloroethane                     | 5                              |  |  |  |
| Carbon Tetrachloride                      | 5                              |  |  |  |
| 1,2-Dichloroethane                        | 5                              |  |  |  |
| Benzene                                   | 5                              |  |  |  |
| Trichloroethene (TCE)                     | 5                              |  |  |  |
| 1,2-Dichloropropane                       | 5                              |  |  |  |
| Bromodichloromethane                      | 5                              |  |  |  |
| 4-Methyl-2-pentanone                      | 10                             |  |  |  |
| 2-Hexanone                                | 10                             |  |  |  |
| cis-1,3-Dichloropropene                   | 5                              |  |  |  |
| trans-1,3-Dichloropropene                 | 5                              |  |  |  |
| 1,1,2-Trichloroethane                     | 5                              |  |  |  |
| Toluene                                   | 5                              |  |  |  |

| Table 1. Volatile Organic Target Analytes |                                |  |  |  |
|-------------------------------------------|--------------------------------|--|--|--|
| Method 8260A                              |                                |  |  |  |
| CONSTITUENT                               | TARGET DETECTION LIMIT ( g/Kg) |  |  |  |
| Dibromochloromethane                      | 5                              |  |  |  |
| Tetrachloroethene (PCE)                   | 5                              |  |  |  |
| Chlorobenzene                             | 5                              |  |  |  |
| Ethylbenzene                              | 5                              |  |  |  |
| m,p-Xylenes                               | 5                              |  |  |  |
| o-Xylene                                  | 5                              |  |  |  |
| Styrene                                   | 5                              |  |  |  |
| Bromoform                                 | 5                              |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | 5                              |  |  |  |
| 1,3-Dichlorobenzene                       | 5                              |  |  |  |
| 1,4-Dichlorobenzene                       | 5                              |  |  |  |
| 1,2-Dichlorobenzene                       | 5                              |  |  |  |

| Table 2. Semivolatile Organic Target Analytes |                                |  |
|-----------------------------------------------|--------------------------------|--|
| Method 8270B - Solid Samples                  |                                |  |
| CONSTITUENT                                   | TARGET DETECTION LIMIT ( g/Kg) |  |
| Phenol                                        | 660                            |  |
| bis(2-Chloroethyl)ether                       | 660                            |  |
| 2-Chlorophenol                                | 660                            |  |
| 2,3-Dichlorobenzene                           | 660                            |  |
| 1,4-Dichlorobenzene                           | 660                            |  |
| Benzyl alcohol                                | 1300                           |  |
| 1,2-Dichlorobenzene                           | 660                            |  |
| 2-Methylphanol                                | 660                            |  |
| bis((2-Chloroisopropyl)ether                  | 660                            |  |
| 4-Methyphenol                                 | 660                            |  |
| N-Nitroso-di-n-propylamine                    | 660                            |  |
| Hexachloroethane                              | 660                            |  |
| Nitrobenzene                                  | 660                            |  |
| Isophorone                                    | 660                            |  |
| 2-Nitrophenol                                 | 660                            |  |
| 2,4-Dimethylphenol                            | 660                            |  |
| bis(2-Chloroethoxy)methane                    | 660                            |  |
| Benzoic acid                                  | 3300                           |  |
| 2,4-Dichlorophenol                            | 660                            |  |
| 1,2,4-Trichlorobenzene                        | 660                            |  |
| Naphthalene                                   | 660                            |  |
| 4-Chloroaniline                               | 1300                           |  |
| Hexachlorobutadiene                           | 660                            |  |
| 4-Chloro-3-methylphenol                       | 1300                           |  |
| 2-Methylnaphthalene                           | 660                            |  |
| Hexachlorocyclopentadiene                     | 660                            |  |
| 2,4,6-Trichlorophenol                         | 660                            |  |
| 2,4,5-Trichlorophenol                         | 660                            |  |
| 2-Chloronaphthalene                           | 660                            |  |

| Table 2. Semivolatile Organic Target Analytes |                                |  |
|-----------------------------------------------|--------------------------------|--|
| Method 8270B - Solid Samples                  |                                |  |
| CONSTITUENT                                   | TARGET DETECTION LIMIT ( g/Kg) |  |
| 2-Nitroaniline                                | 3300                           |  |
| Dimethylphthalate                             | 660                            |  |
| Acenaphthylene                                | 660                            |  |
| 2,6-Dinitrotoluene                            | 3300                           |  |
| 3-Nitroaniline                                | 3300                           |  |
| Acenaphthene                                  | 660                            |  |
| 2,4-Dinitrophenol                             | 3300                           |  |
| 4-Nitrophanol                                 | 3300                           |  |
| 4-Nitrophenol                                 | 660                            |  |
| Dibenzofuran                                  | 660                            |  |
| 2,4-Dinitrotoluene                            | 660                            |  |
| Diethyphthalate                               | 660                            |  |
| 4-Chlorophenyl-phenylether                    | 660                            |  |
| Fluorene                                      | 660                            |  |
| 4-Nitroaniline                                | 3300                           |  |
| 4,6-Dinitro-2-methylphenol                    | 3300                           |  |
| N-Nitrosodiphenylamine                        | 660                            |  |
| 4-Bromophenyl-phenylether                     | 660                            |  |
| Hexachlorobenzene                             | 660                            |  |
| Pentachlorophenol                             | 3300                           |  |
| Phenanthrene                                  | 660                            |  |
| Anthraoene                                    | 660                            |  |
| Carbazole                                     | 660                            |  |
| Di-n-butylphthalate                           | 660                            |  |
| Fluoranthene                                  | 660                            |  |
| Pyrene                                        | 660                            |  |
| Butylbenzylphthalate                          | 660                            |  |
| 3,3'-Dichlorobenzidine                        | 1300                           |  |
| Benzo(a)anthracene                            | 660                            |  |

| Table 2. Semivolatile Organic Target Analytes |     |  |  |
|-----------------------------------------------|-----|--|--|
| Method 8270B - Solid Samples                  |     |  |  |
| CONSTITUENT TARGET DETECTION LIMIT ( g/Kg)    |     |  |  |
| bis(2-Ethylhexyl)phthalate                    | 660 |  |  |
| Chrysene                                      | 660 |  |  |
| Din-octylphthalate                            | 660 |  |  |
| Benzo(b)fluoranthene                          | 660 |  |  |
| Benzo(k)fluoranthene                          | 660 |  |  |
| Benzo(a)pyrene                                | 660 |  |  |
| Indeno(1,2,3-cd)pyrene                        | 660 |  |  |
| Dibenz(a,h)anthracene                         | 660 |  |  |
| Benzo(g,h,f)perylene                          | 660 |  |  |

|                               |             | SW-846      | Target |
|-------------------------------|-------------|-------------|--------|
| Detection Limits <sup>1</sup> |             |             |        |
| Analyte                       | Method(s)   | Solid mg/kg |        |
|                               |             |             |        |
| Aluminum                      | 6020        | 10          |        |
| Antimony                      | 6020        | 1           |        |
| Arsenic                       | 6020        | 2           |        |
| Barium                        | 6020        | 10          |        |
| Beryllium                     | 6020        | 1           |        |
| Bismuth                       | 6020        | 1           |        |
| Cadmium                       | 6020        | 1           |        |
| Calcium                       | 6020        | 100         |        |
| Chromium                      | 6020        | 2           |        |
| Copper                        | 6020        | 1           |        |
| Iron                          | 6020        | 10          |        |
| Lead                          | 6020        | 0.6         |        |
| Magnesium                     | 6020        | 100         |        |
| Manganese                     | 6020        | 3           |        |
| Mercury                       | 7471        | 0.1         |        |
| Nickel                        | 6020        | 1           |        |
| Selenium                      | 6020        | 1           |        |
| Silver                        | 6020        | 1           |        |
| Sodium                        | 6020        | 100         |        |
| Tin                           | 6020        | 1           |        |
| Zinc                          | 6020        | 4           |        |
| Chloride                      | SM 300.0    | NR          |        |
| Fluoride                      | SM 340.2    | NR          |        |
| Cyanide (total and amenable)  | 9010        | NR          |        |
| Hexavalent chromium           | 3060A/7196A | NR          |        |

## Table 3. Target Analytes: Metals and other Inorganics

1 The target detection limits provided are for reference purposes. The actual method detection limits are sample dependent and may vary as the sample matrix varies.

NR - Not required, best achievable limit by laboratory to be used.

| <u>Analyte</u> | Methods <sup>1</sup> | Target Quantitation Limits mg/L |
|----------------|----------------------|---------------------------------|
| <u>Metals</u>  |                      |                                 |
| Arsenic        | 6020                 | 5.0                             |
| Barium         | 6020                 | 100.                            |
| Cadmium        | 6020                 | 1.0                             |
| Chromium       | 6020                 | ) 5.0                           |
| Lead           | 6020                 | 5.0                             |
| Mercury        | 7470                 | 0.2                             |
| Selenium       | 6020                 | 1.0                             |
| Silver         | 6020                 | 5.0                             |

 Table 4. TCLP Compliance Criteria

1. All methods are SW-846 3rd Ed.

Appendix F: Regional Benchmarking Survey

## EPA's CSI Survey of 10 Milwaukee Platers Instructions

The National Association of Metal Finishers (NAMF) is member of Environmental Protection Agency's Common Sense Initiative (CSI) metal finishing sector workgroup and is participating in the data gather effort focusing on hazardous waste regulatory issues has identified the need to compare the characteristics of F006 wastes generated today with F006 wastes generated at the time of the listing under RCRA (1980). The following survey will be used to evaluate the chemical content of F006 generated by 10 metal finishing facilities from Milwaukee. This information will be used to characterize F006, evaluate the processes generating F006 and the level of pollution prevention practiced, and determine the recyclability of F006. Please note that this survey should be completed using available information or best engineering judgement and that you are not required to generate any new data.

**Confidentiality**: If you believe that some parts of the information supplied by your are commercially sensitive, you may claim protection for your data. However it will be extremely difficult for the workgroup to use any data that is considered confidential in determining the F006 recyclability. If you believe your information to be sensitive, it may be blinded in order for the workgroup to develop a final report.

Return the completed survey within 10 days from date of receipt to:

William (Bill) Sonntag NAMF 2600 Virginia Ave. NW, Suite 408 Washington, DC 20037 Phone: (202) 965-5190 Fax: (202) 965-4037

The survey may also be submitted to the EPA contractor during the engineering site visit and sampling effort.

For technical assistance, call Kristy Allman, SAIC at (703) 318-4766.

#### Response may be typed or handwritten neatly. Use additional paper as needed.

#### A. Corporate and Facility Information

| Parent Corporation          |                                               |                             |
|-----------------------------|-----------------------------------------------|-----------------------------|
| Name of Company/Affili      | ate                                           |                             |
| Address of Corporation I    | Headquarters                                  |                             |
| Street                      |                                               |                             |
| City                        | State Zip                                     |                             |
| Name of Facility            |                                               |                             |
| Address of Facility (if dif | fferent from above)                           |                             |
| Street                      |                                               |                             |
| City                        | State Zip                                     |                             |
| RCRA Hazardous Waste        | e Generator ID Number:                        |                             |
| POTW/NPDES Pe               | rmit Number:                                  |                             |
| PSD Permit Numb             | er:                                           |                             |
| Name(s) of personnel to     | be contacted for additional information perta | ining to this questionnaire |
| Name                        | Title                                         | Telephone                   |
|                             |                                               |                             |
|                             |                                               |                             |

 Type of Facility:
 \_\_\_\_\_\_ Job shop
 \_\_\_\_\_\_ Captive shop

Number of Employees:

#### B. Process Flow Diagram

The purpose of this question is to provide the workgroup with an overview of the plating operations and understanding of how the various plating operations are linked together, and the flow of wastewaters to the waste water treatment plant (WWTP) generating the F006 sludge.

The workgroup is most interested in the following commonly used processes:

- zinc plating on steel
- nickel/chromium plating on steel
- copper/nickel/chromium plating on non-ferrous substrates (zinc, brass, ABS)
- copper plating/stripping in the printed circuit industry
- hard chromium plating on steel
- cadmium plating

Please provide a general process block flow diagram for each these plating processes that identifies basic plating operation. This should contain general information on feedstocks, plating solutions, waste generation, etc.

Please provide a brief written description of the plating process. This should include:

- Feed stock, intermediate, or product storage
- Waste management units
- Waste storage and shipping equipment
- Production output
- Waste generation
- Plating sequence, solutions, and substrates

#### C. Wastewater Treatment Plant Flow Diagram

Please provide a brief description of the treatment process wastewaters go through to remove metals and other toxic substances prior to discharge. Please discuss the following steps and equipment used (as applicable):

- waste stream segregation
- hexavalent chrome reduction
- cyanide oxidation
- neutralization, flocculation, clarification, effluent polishing
- sludge dewatering and drying
- sludge blending to achieve desired concentration
- sludge storage and duration

#### D. F006 Quantity Generated and Management Methods

D.1. What was the total product weight produced by your facility in 1995? Long Tons or Surface area (Circle one)

D.2. Is the F006 generated at your facility process-specific or is it combined in the wastewater treatment plant?

D.3. What was the total quantity of F006 generated in 1995? \_\_\_\_\_ Dry tons

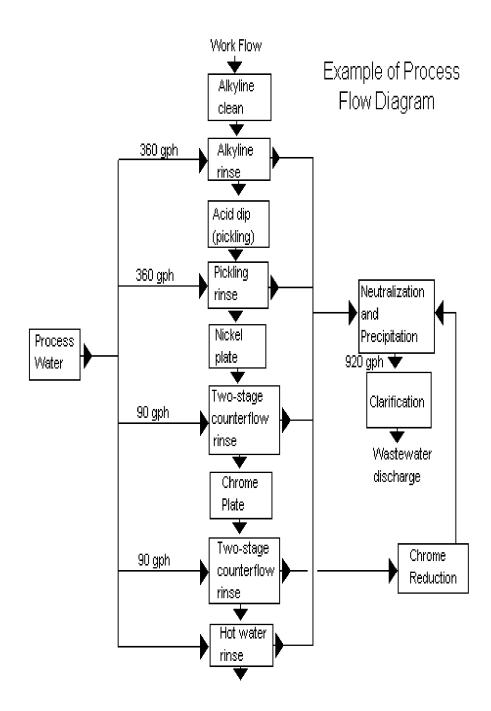
D.4. Estimate the quantity of F006 generated from each process in 1995?

## Process

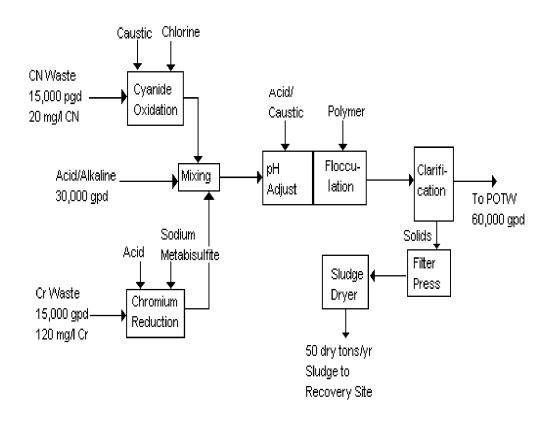
Quantity (dry tons)

- D.5. Please provide a description of any onsite recycling of your F006. Please estimate the quantities (dry tons) recycled or recovered.
- D.6. Please provide the name, location, brief process description (e.g., pyrometallurgical) and quantity (dry tons) for all F006 sludge that is sent offsite for recycling/metals recovery.
- D.7. Please provide the name, location, management method (e.g., Subtitle C landfill) and quantity (dry tons) for all F006 sludge that is sent offsite for disposal.
- D.8.What is the quantity of F006 sludge disposed of onsite?Dry tonsD.9.What was the quantity exported outside the U.S. in 1995?Dry tons

#### E. F006 Waste Characterization


Please provide waste characterization analytical data sheets for your F006 sludge. Submit both Toxicity Characteristic Leaching Procedure (TCLP) and total compositional data when possible. Please provide characterization information (if available) for pH, reactive cyanide, specific gravity, and phase distribution. Please be sure your facility name and F006 sludge sample identification is clearly marked on each page or provide it in the top right hand corner of the analytical data sheet with any additional information you may wish to provide. Please provide any specifications required by recyclers.

#### F. Pollution Prevention/Waste Minimization Activities


Briefly please respond to each of the following questions concerning your present or past pollution prevention/waste minimization (P2) activities. Please remember it is just as important to document your failures as well as your successes in conducting P2.

- F.1. What types of equipment changes or equipment layouts have you implement in conducting P2?
- F.2. Describe how you have improved operating practices including operator training.
- F.3. Describe any material substitution or elimination you have implemented to make your F006 less toxic or more recyclable.
- F.4. Describe your water-use (e.g., flow restriction, drag out) reduction program or policy and any addition P2 measures conducted at your facility not mentioned before.

- F.5. Describe any closed-loop recycling conducted by your plating operation.
- F.6. Please describe how your facility's use of pollution prevention has (or has not) affected the quantities and/or quality of F006 sludge generated at your facility.
- F.7. Do you have any documentation where P2 was implemented and subsequently partially or completely abandoned in favor of reclamation. If so can you provide EPA with a copy of the documentation and briefly describe it below.
- F.8. Please describe any industrial trends affecting your metal finishing facility or the metal finishing industry as a whole and/or the generation of F006 sludge.
- F.9. Please describe any economic barriers and/or incentives to conducting P2. Please describe the principle economic factors that have lead to your facility's current practices.
- F.10. Please describe any regulations that affect P2, recycling and sludge treatment/management decisions.



# Example of Wastewater Treatment Process Flow Diagram



(Example from "Pollution Prevention and Control Technology for Plating Operation," G. Cushnie for NCMS.)

Appendix G: National Benchmarking Survey and Instructions

#### Call for Data as Part of EPA's CSI Instructions

The National Association of Metal Finishers (NAMF), American Electroplaters and Surface Finishers (AESF), and Metal Finishing Sciences Association (MFSA) are members of the Environmental Protection Agency's Common Sense Initiative (CSI) metal finishing sector workgroup and are participating in the data gathering effort focusing on hazardous waste regulatory issues and has identified the need to compare the characteristics of F006 wastes generated today with F006 wastes generated at the time of the listing under RCRA (1980). The following survey will be used to characterize F006, evaluate the processes generating F006 and the level of pollution prevention practiced, and determine the recyclability of F006. Please note that this survey should be completed using available information or best engineering judgement and that you are not required to generate any new data.

F006 is defined as "Wastewater treatment sludges from electroplating operations except from the following processes: (1) Sulfuric acid anodizing of aluminum; (2) tin plating on carbon steel; (3) zinc plating (segregated basis) on carbon steel; (4) aluminum or zinc-aluminum plating on carbon steel; (5) cleaning/stripping associated with tin, zinc, and aluminum plating on carbon steel; and (6) chemical etching and milling of aluminum." (40 CFR §261.31)

Return the completed survey as soon as possible but not later than 30 days after receipt of this survey to:

Christian Richter NAMF/AESF/MFSA 2600 Virginia Ave. NW, Suite 408 Washington, DC 20037 Phone: (202) 965-5190 Fax: (202) 965-4037

#### Response may be typed or handwritten neatly.

#### A. CORPORATE AND FACILITY INFORMATION

| Parent Corporation                                  |                                                      |                          |       |
|-----------------------------------------------------|------------------------------------------------------|--------------------------|-------|
| Name of Company/Affiliate                           |                                                      |                          |       |
| Address of Corporation Headquarters                 |                                                      |                          |       |
| Street                                              |                                                      |                          |       |
| City State                                          | _ Zip                                                |                          |       |
| Name of Facility                                    |                                                      |                          |       |
| Address of Facility (if different from above)       |                                                      |                          |       |
| Street                                              |                                                      |                          |       |
| City State                                          | Zip                                                  |                          |       |
| RCRA Hazardous Waste Generator ID Number            | er:                                                  |                          |       |
| POTW/NPDES Permit Number:                           |                                                      |                          |       |
| PSD Permit Number:                                  |                                                      |                          |       |
| State or Local environmental permits:               |                                                      |                          |       |
| Name(s) of personnel to be contacted for addit Name | ional information pertaining to this<br><b>Title</b> | data<br><b>Telephone</b> |       |
|                                                     |                                                      | -                        |       |
| Type of Facility:Job shop                           | Captive shop                                         |                          |       |
| September 1998                                      | 133                                                  | F006 Benchmarking        | Study |

Number of Employees:

#### **B. METAL FINISHING OPERATIONS**

What type of plating operations are conducted by your facility? Specify cyanide- versus non-cyanide-based plating.

| zinc plating on steel CN Non-CN                                             |
|-----------------------------------------------------------------------------|
| nickel/chromium plating on steel                                            |
| copper/nickel/chromium plating on non-ferrous substrates (zinc, brass, ABS) |
| copper plating/stripping in the printed circuit industry                    |
| hard chromium plating on steel                                              |
| Copper plating                                                              |
| tin (acid) plating                                                          |
| cadmium plating                                                             |
| sulfuric acid anodizing                                                     |
| silver plating                                                              |
| gold plating                                                                |
| bright dip of copper/alloy                                                  |
| Other,( specify):                                                           |

#### C. F006 QUANTITY GENERATED AND MANAGEMENT METHODS

C1. What was the total product weight produced by your facility in 1996? \_\_\_\_\_ (Long Tons/Cubic yards/Cubic feet) Please circle appropriate units.

C2. Is the F006 generated at your facility process-specific or is it combined in the wastewater treatment plant?

C3. Are cyanide-bearing F006 sludges segregated from non-cyanide F006? Yes / No

- C4. What was the total quantity of F006 generated in 1996? \_\_\_\_\_ (Dry Tons/Cubic yards/Cubic feet) Please circle appropriate units.
- C5. Estimate the quantity of F006 generated from each process in 1996?

| Process | Quantity (Specify units) |
|---------|--------------------------|
|         |                          |
|         |                          |
|         |                          |
|         |                          |

C6. Please provide a description of any onsite recycling of your metals prior to discharge to wastewater treatment. Please estimate the quantities (Dry Tons/Cubic yards/Cubic feet) recycled or recovered.

| Description of any onsite recycling | Quantity recycled or recovered |  |
|-------------------------------------|--------------------------------|--|
|                                     |                                |  |
|                                     |                                |  |
|                                     |                                |  |

C7. Please provide the name, location, and quantity (Dry Tons/Cubic yards/Cubic feet) for all F006 sludge that is sent offsite for recycling/metals recovery.

| Name | Location | Quantity |
|------|----------|----------|
|      |          |          |
|      |          |          |

C8. Please provide the name, location, management method (e.g., Subtitle C landfill) and quantity (dry tons) for all F006 sludge that is sent offsite for disposal.

| Name | Location | Management<br>Method | Quantity |
|------|----------|----------------------|----------|
|      |          |                      |          |
|      |          |                      |          |
|      |          |                      |          |

C9. What was the quantity exported outside the U.S. in 1996? \_\_\_\_\_ Dry tons

C10. Please check any of the wastewater treatment process used to remove metals and other toxic substances prior to discharge. Please discuss the following steps and equipment used (as applicable):

| waste stream segregation                                        |  |  |
|-----------------------------------------------------------------|--|--|
| hexavalent chrome reduction                                     |  |  |
| cyanide oxidation                                               |  |  |
| neutralization, flocculation, clarification, effluent polishing |  |  |
| sludge blending to achieve desired concentration                |  |  |

## D. F006 WASTE CHARACTERIZATION

Please provide waste characterization analytical data sheets for your F006 sludge. Submit both Toxicity Characteristic Leaching Procedure (TCLP) and total compositional data when possible. Please provide characterization information (if available) for pH, reactive cyanide, specific gravity, and phase distribution. Please be sure your facility name and F006 sludge sample identification is clearly marked on each page or provide it in the top right hand corner of the analytical data sheet with any additional information you may wish to provide. Please provide any specifications required by recyclers.

#### E. POLLUTION PREVENTION/WASTE MINIMIZATION ACTIVITIES

E1. Check the techniques used at your site. If requested, indicate whether the technique is automated or manual. The pollution prevention benefits from the techniques you use (1= low success, 5= high success). If the rating is 1 or 2,

indicate below what problems were encountered. Also, use the space below or other sheets to describe any innovative methods or to provide additional information.

| Reduce Drag-Out Losses By:                                                                                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Using drag-out rinse tanks and returning chemicals to the process bath<br>Manual or Automatic                                                                            |  |  |
| Using drip tanks and returning chemicals to the process bath<br>Manual or Automatic                                                                                      |  |  |
| Reducing speed of rack/part withdrawal<br>Manual or Automatic                                                                                                            |  |  |
| Allowing rack/part to drip over plating tank<br>Manual or Automatic                                                                                                      |  |  |
| Using a drag-in/drag-out arrangement (i.e., use of same rinse tank before and after plating also referred to as a double-dip or double-use rinse)<br>Manual or Automatic |  |  |
| Fog or spray rinses installed over process bath<br>Manual or Automatic                                                                                                   |  |  |
| Air knives that blow off drag-out<br>Manual or Automatic                                                                                                                 |  |  |
| Drip shields between tanks<br>Manual or Automatic                                                                                                                        |  |  |
| Lower bath concentration                                                                                                                                                 |  |  |
| Increasing solution temperature (reduces viscosity)                                                                                                                      |  |  |
| Using a wetting agent (reduces viscosity)                                                                                                                                |  |  |
| Positioning work piece to minimize solution holdup                                                                                                                       |  |  |
| Other, specify                                                                                                                                                           |  |  |

| R | Reduce Rinse Water Use By:                                                         |  |  |
|---|------------------------------------------------------------------------------------|--|--|
|   | Manually turning off rinse water when not in use                                   |  |  |
|   | Conductivity or pH rinse controls                                                  |  |  |
|   | Timer rinse controls                                                               |  |  |
|   | Flow restrictors                                                                   |  |  |
|   | Countercurrent rinses                                                              |  |  |
|   | Spray rinses                                                                       |  |  |
|   | Air agitation in rinse tanks                                                       |  |  |
|   | Use flow meters/accumulators to track water use at each rinse tank or plating line |  |  |
|   | Reactive rinsing or cascade rinsing                                                |  |  |
|   | Other, specify                                                                     |  |  |

| Various Operating Practices:                                                                                                                                                                      | P2 Benefit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Training and Programs:                                                                                                                                                                            |            |
| Established a formal policy statement with regard to pollution prevention and control                                                                                                             |            |
| Established a formal pollution prevention program                                                                                                                                                 |            |
| Conduct employee education for pollution prevention                                                                                                                                               |            |
| Establish a preventative maintenance program for tanks                                                                                                                                            |            |
| Use specifically assigned personnel for chemical additions                                                                                                                                        |            |
| Procedures:                                                                                                                                                                                       |            |
| Stricter conformance w/ Line Preventive Maintenance Schedule                                                                                                                                      |            |
| Stricter conformance w/ SPC Procedures                                                                                                                                                            |            |
| Waste stream segregation of contact and noncontact wastewater                                                                                                                                     |            |
| Strict chemical inventory control                                                                                                                                                                 |            |
| Perform routine bath analyses                                                                                                                                                                     |            |
| Maintain bath analyses/addition logs                                                                                                                                                              |            |
| Have written procedures for bath make-up and additions                                                                                                                                            |            |
| Use process baths to maximum extent possible (no dump schedule)                                                                                                                                   |            |
| Remove anodes from bath when they are idle (e.g., cadmium, zinc)                                                                                                                                  |            |
| Regularly retrieve fallen parts/racks from tanks                                                                                                                                                  |            |
| F006 Volume Reduction methods:                                                                                                                                                                    |            |
| Closed-loop recycling                                                                                                                                                                             |            |
| Use control method for adding water to process tanks                                                                                                                                              |            |
| Sludge Dewatering- (Vacuum filter, Solid bowl centrifuge, Imperforate basket centrifuge, belt filter press, Recessed plate filter press, sludge drying beds, sludge lagoons, sludge dryers, etc.) |            |
| Install overflow alarms on process tanks                                                                                                                                                          |            |
| Install other spill/leak detection system, specify                                                                                                                                                |            |
| Inspections/ Maintenance:                                                                                                                                                                         |            |
| Perform regular maintenance of racks/barrels                                                                                                                                                      |            |
| Pre-inspect parts to prevent processing of obvious rejects                                                                                                                                        |            |
| Waste Reduction Study conducted                                                                                                                                                                   |            |
| Research/Evaluations:                                                                                                                                                                             |            |
| Evaluation of recycling alternatives                                                                                                                                                              |            |
| Increasing drain time over process tanks                                                                                                                                                          |            |

| v | arious Operating Practices:                                                           | P2 Benefit |
|---|---------------------------------------------------------------------------------------|------------|
|   | Research of alternative plating technologies                                          |            |
|   | Development of tracking system for monitoring flow from different areas               |            |
|   | Monitoring of incoming water with strict control program                              |            |
|   | Two separate labs for process chemistry and wastewater treatment                      |            |
| E | limination/Replacement/Substitutions:                                                 |            |
|   | Eliminate obsolete processes and/or unused or infrequently used processes             |            |
|   | Replace cyanide based plating solution with alkaline-based solutions                  |            |
|   | Elimination of rinse waters to waste treatment (nickel, chrome)                       |            |
|   | Substitution of chromate and dichromate seal with non chrome sealer                   |            |
|   | Elimination of plating services (cadmium, tin, nickel, copper, brass and hard chrome) |            |
|   | Elimination of vapor degreasing                                                       |            |
|   | Implementation of a multi- stage cyanide destruct system                              |            |
|   | Elimination of chelated cleaners                                                      |            |
|   | Other, specify                                                                        |            |
|   | Other, specify                                                                        |            |

Additional Information (attach other sheets, if necessary):

If yes, approximately how many gallons per day average have you reduced your flow by using pollution prevention? \_\_\_\_\_ gpd eliminated (base year = 19\_\_)

E.3. Recycle and Recovery Technologies - Check each technology that you have used in the past or currently use, indicate the type of process bath to which the technology is applied.

| Те | chnology                         | Process Bath Technology is Applied to |
|----|----------------------------------|---------------------------------------|
|    | Electrodialysis                  |                                       |
|    | Electrowinning                   |                                       |
|    | Evaporator                       |                                       |
|    | Ion flotation                    |                                       |
|    | Ion exchange                     |                                       |
|    | Mesh pad mist eliminator/recycle |                                       |
|    | Reverse osmosis                  |                                       |
|    | Ultrafiltration                  |                                       |

E.2. Has the implementation of pollution prevention reduced your wastewater discharge rate? Yes No

| Technology |        | Process Bath Technology is Applied to |  |  |
|------------|--------|---------------------------------------|--|--|
|            | Other* |                                       |  |  |

#### E.4. Solution Maintenance Techniques

Check the techniques that you presently use and indicate the type of process bath to which the techniques applied. Use the space below to describe any innovative methods or to provide additional information.

| Technology                                 | Process Bath Technology is Applied to |
|--------------------------------------------|---------------------------------------|
| Acid retardation                           |                                       |
| Carbon treatment (batch)                   |                                       |
| Carbon treatment (continuous)              |                                       |
| Dummying of metal contaminants             |                                       |
| Electrodialysis for inorganic contaminants |                                       |
| Carbonate freezing                         |                                       |
| Filtration, in-tank                        |                                       |
| Filtration, external                       |                                       |
| High pH treatment                          |                                       |
| Precipitation                              |                                       |
| Liquid/ Liquid extraction                  |                                       |
| Microfiltration                            |                                       |
| Ultrafiltration                            |                                       |
| Other, specify                             |                                       |
| Other, specify                             |                                       |
| Other, specify                             |                                       |

#### Additional Information:

Appendix H: National Benchmarking Commercial Recyclers Survey

#### **EPA's CSI Survey of Recyclers of F006 Instructions**

The National Association of Metal Finishers (NAMF), American Electroplaters and Surface Finishers (AESF), and Metal Finishing Sciences Association (MFSA) are members of Environmental Protection Agency's Common Sense Initiative (CSI) metal finishing sector workgroup and are participating in the data gathering effort focusing on hazardous waste regulatory issues. The workgroup has identified the need to compare the characteristics of F006 wastes generated today with F006 wastes generated at the time of the listing under RCRA (1980). The following survey will be used to characterize F006, evaluate the F006 recycling processes, and determine the recyclability of F006. Please note that this survey should be completed using available information or best engineering judgement and that you are not required to generate any new data.

Return the completed survey within 30 days from date of receipt to:

William (Bill) Sonntag NAMF/AESF/MFSA 2600 Virginia Ave. NW, Suite 408 Washington, DC 20037 Phone: (202) 965-5190 Fax: (202) 965-4037

For technical assistance, please call Kristy Allman at (703) 318-4766.

#### Response may be typed or handwritten neatly. Use additional paper, as needed.

#### **CORPORATE AND FACILITY INFORMATION** A.

| Parent Corporation               |                              |                 |               |                        |
|----------------------------------|------------------------------|-----------------|---------------|------------------------|
| Name of Recycling Company        | /Affiliate                   |                 |               |                        |
| Address of Recycling Compa       | ny Headquarters              |                 |               |                        |
| Street                           |                              |                 |               |                        |
| City                             | State                        | Zip             | _             |                        |
| Address of Facility (if differen | nt from above)               |                 |               |                        |
| Street                           |                              |                 |               |                        |
| City                             | State                        | Zip             | _             |                        |
| RCRA Hazardous Waste Ger         | nerator ID Number:           |                 |               |                        |
| POTW/NPDES Permit                | Number:                      |                 |               |                        |
| PSD Permit Number:               |                              |                 |               |                        |
|                                  |                              |                 |               |                        |
| Name of person to be contact     | ed for additional informatio | n pertaining to | this question | naire                  |
| Name                             | Т                            | litle           |               | Telephone              |
| Manner of Handling F006: H       | ydrometallugical             | %               |               |                        |
|                                  | Pyrometallurgical            |                 | %             |                        |
|                                  | Blender/Broker               |                 | %             |                        |
|                                  | Other, specify (%)           |                 |               |                        |
| Number of Employees:             |                              |                 |               |                        |
| Sontombor 1009                   |                              | 1.4.1           |               | E006 Danahmarking Stud |

#### B. PROCESS FLOW DIAGRAM

- B.1 On a separate sheet of paper, please provide brief description of your process and, if possible, a process flow diagram that identifies basic metal recovery methods. This should include general information including process steps, feeds, products, and the emissions and wastes from the recycling process. This should include:
  - Feed stocks, intermediates, and/or products
  - Process steps
  - Waste management units
  - production output
  - emissions and waste generation points

#### C. F006 QUANTITIES

- C.1. What was the volume of all the materials processed by your facility in 1995?<sup>15</sup> \_\_\_\_\_ Long tons
- C.2. What was the volume of F006 sludge processed by your facility in 1995?<sup>1</sup> \_\_\_\_\_ Dry tons

### D. F006 CHARACTERIZATION

- D.1. Please provide analytical data for F006 evaluated in 1995<sup>1</sup>. If this represents a large quantity of data, you may present a subset focusing on either more complete analytical scans or on a more recent time period (i.e., the last month). If the data is confidential, you may present a range, with the average and number of data points. If available, please provide the broader pre-approval scans, typically examining a broader spectrum of constituents, rather than the more cursory screening analyses typically performed on each load of newly received F006. When available, submit both Toxicity Characteristic Leaching Procedure (TCLP) and total concentration data. Please be sure your facility name, and F006 sludge sample is clearly identified on each page or provide it in the top right hand corner of the analytical data sheet with any additional characteristic information you may wish to provide. If you have any questions, you may call the technical assistance line.
- D.2. Please provide a copy or descriptions of the specification for the F006 sludge must meet for your facility to accept it for recycle. Use additional paper if necessary.
- D.3. Explain any undesirable physical or chemical characteristics F006 might possess making it unacceptable to you facility. Use additional paper if necessary.

## **EVALUATION OF F006**

E.1. How does your facility establish the value of F006 (i.e., how do you determine what your company will charge or pay for F006)? Please list the specific metals or combination of metals, or contaminants which affect your valuations. (Please respond in less specific terms if specific termination is considered proprietary.) Use additional paper if necessary.

<sup>&</sup>lt;sup>15</sup> The CSI workgroup is attempting to characterize the F006 sludge based on 1995 data. If data for 1995 is not available, other recent time frames will be useful. Please clearly mark the date or time frame on the data sheets.

Appendix I: Responses to Citizen Group Phone Survey Individual responses are summarized below.

**Question #1: Is the Group Aware of Environmental Impacts from the Recycling Facility?** 

NO

NO. "Not in the past 6 years. No known violations. Involved in moving waste from one state to another--some question concerning whether it is "sham recycling" or not."

NO

NO COMMENT. The environmental group technically no longer exists.

NO

NO. "They generally try to make env. laws easier, through political influence. They also operate a superfund site."

NO

NO

UNKNOWN. "Never heard of the company."

**Question #2: Is the Group Aware of Economic Impacts from the Recycling Facility?** 

NO

NO. "They are the largest waste recycler in this state, but mostly imported from other states."

NO

NO COMMENT. The environmental group technically no longer exists.

YES. "Positive impact, always in the business pages of the newspaper."

NO

NO. "Provides a good service for local companies."

NO

UNKNOWN. "Never Heard of the company."

Question #3: Is the facility considered a "Good Neighbor?"

UNKNOWN

NO. "They spread the waste on the ground to dry it."

UNKNOWN. "Have heard little about this facility, it is 50 miles away."

NO COMMENT. The environmental group technically no longer exists.

YES. "Have no information to say they are a bad neighbor."

NO. "Don't trust them."

YES. "They make an effort to get involved in informing the community on what they do."

Question #3: Is the facility considered a "Good Neighbor?"

YES. "They received an environmental award and, we have participated with them on voluntary P2 committees and projects."

UNKNOWN. "Never heard of the company."

Appendix J: Statistical "Representativeness" of the National Benchmarking Study

## Statistical "Representativeness" of the National Benchmarking Study

A chi-square analysis was performed to determine whether there is a difference in the distribution of sample proportions for D&B, BRS and "national" databases over the different regions.

• Summary of results of comparison of the National sample with the Dun & Bradstreet extract

A chi-square analysis was performed to compare the National sample and the D & B extract (Primary SIC code of 3471) on the number of data points for each of the ten EPA regions.

Results of the test showed that they are statistically different (p-value - 0.003. Please refer to Table 1 of Attachment 1). The difference can be attributed to the difference in percentages of the number of facilities in the National sample and the D & B extract for EPA regions 4, 5, and 6. The D & B extract had nearly 30% of the data points as against 42% in the National sample for region 5. The National sample had 5.78 % (region 4), 1.16% (region 6) of the data points as against 9.84% (region 4) and 7.43% (region 6) in the D & B. The difference in size of the National sample (173) and the D & B (4147) was an important issue for the significant p-value of 0.03%. If the National sample is used to produce any national estimate, there should be caveats for the differences mentioned above for EPA region 4, 5, and 6.

The National and the D&B extract were also compared on the basis of mean number of employees per facility. It was found that the means for the National sample were consistently higher than the corresponding means in the D & B (Please refer to table 2 of Attachment 1). This shows that relatively larger facilities in terms of manpower volunteered for the National sample. Hence, any national estimate from this sample must come with a caveat indicating a potential bias problem.

For 9 degrees of freedom, the  $\chi^2$  value of 25.22 is significant beyond both 5% and 1% levels. Therefore, we reject the null hypothesis that there is no difference in the sample proportions for D&B and "national" databases. Note, however, that due to small sample sizes in the "national" database, the results could be more informative after collapsing several regions in larger strata.

2. In this section, a statistical method for testing the difference between average number of employees from the D&B and "national" databases is described. Histograms and normal probability plots applied to the total number of employees suggest that the characteristic of interest (# of employees) is distributed more lognormally than normally. Therefore, the log-transformed version was used in all calculations. Assuming that the D&B database covers almost all facilities of interest, the true mean and true standard deviation for each region can be approximated by

$$\bar{Y}_{j} = \frac{1}{N_{j}} \sum_{k} Y_{jk} , \qquad S_{j} = \sqrt{\frac{1}{N_{j}} \sum_{k} (Y_{jk} - \bar{Y}_{j})^{2}}$$

Since  $N_j$  is large enough and  $S_j$  is known, we can use normal approximation to test the differences between the true (*D&B*) mean,  $Y_j$ , and the sample (*"national"*) mean,  $y_j$ . In this case the test statistic is given by

$$z_j = \frac{|\bar{y}_j - \bar{Y}_j|}{S_j}$$
,  $j=1,2, ,10$ 

• Summary of results of comparison of the National sample with the BRS sample

Results of the chi-square test performed to compare the National sample and the BRS sample are similar to the results of comparison of the National sample and the D & B extract. In fact, with a precision of 0.1%, we conclude that the distribution of sample points by region in the National sample is significantly different from the distribution of sample points by region in the BRS sample. The difference can be attributed to the difference in percentages of the number of facilities in the national sample and the BRS sample for EPA regions 3, 4, 5, 6, and 9.

Comparing the average F006 discharge for each region in the national sample and in the BRS sample, we found that, in general, there are no significant differences for most regions in these two samples. Only two regions (region 1 and region 5) out of ten in the National sample discharged significantly more F006 than the corresponding regions in the BRS sample. Note also that there were no samples taken from region 8 in the National survey.

• Comparison of the Regional Benchmarking Sampling data to the National Survey data

The results of the test for all 10 groups along with the corresponding p-values are attached. In order to compare the responses from the ALLDATA sample and the NATIONAL sample, we examine how much the mean and distribution of each analyte from the ALLDATA sample differ from those from the NATIONAL sample. The table below summarizes the results of statistical tests performed to compare the two samples. It contains p-values for the analytes that are in both ALLDATA and NATIONAL samples. P-values less than 0.05 indicate a statistically significant difference between the responses from the ALLDATA sample and the NATIONAL sample for a particular analyte.

From this table we conclude that the reported values are significantly different for Amenable Cyanide, Magnesium, Selenium, Total Cyanide, and Zinc from the TOTAL group. The results for other analytes do not show significant differences between the two samples under study.

| TCLP METALS |         | TOTAL METALS     |         |  |
|-------------|---------|------------------|---------|--|
| ANALYTE     | P-VALUE | ANALYTE          | P-VALUE |  |
| BARIUM      | 0.0691  | ALUMINUM         | 0.1407  |  |
| CADMIUM     | 0.5960  | AMENABLE CYANIDE | 0.0084  |  |
| CHROMIUM    | 0.0517  | ANTIMONY         | 0.3772  |  |
| LEAD        | 0.3126  | ARSENIC          | 0.2715  |  |
| MERCURY     | 0.1071  | BARIUM           | 0.6320  |  |
| SILVER      | 0.4097  | BERYLLIUM        | 0.3729  |  |
|             |         | BISMUTH          | 0.2239  |  |
|             |         | CADMIUM          | 0.3766  |  |
|             |         | CALCIUM          | 0.1183  |  |
|             |         | CHLORIDE         | 0.4763  |  |
|             |         | CHROMIUM         | 0.1502  |  |
|             |         | CHROMIUM, HEXA   | 0.2812  |  |
|             |         | COPPER           | 0.1159  |  |
|             |         | FLUORIDE         | 0.1477  |  |
|             |         | IRON             | 04179   |  |
|             |         | LEAD             | 0.6072  |  |
|             |         | MAGNESIUM        | 0.0044  |  |
|             |         | MANGANESE        | 0.3262  |  |
|             |         | MERCURY          | 0.2802  |  |
|             |         | NICKEL           | 0.2023  |  |
|             |         | SELENIUM         | 0.0365  |  |
|             |         | SILVER           | 0.2741  |  |
|             |         | SODIUM           | 0.6743  |  |
|             |         | TIN              | 0.2546  |  |
|             |         | TOTAL CYANIDE    | 0.0319  |  |
|             |         | ZINC             | 0.0146  |  |